Properties

Label 2-9282-1.1-c1-0-110
Degree $2$
Conductor $9282$
Sign $-1$
Analytic cond. $74.1171$
Root an. cond. $8.60913$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 2·5-s + 6-s + 7-s − 8-s + 9-s + 2·10-s + 4·11-s − 12-s − 13-s − 14-s + 2·15-s + 16-s + 17-s − 18-s + 4·19-s − 2·20-s − 21-s − 4·22-s − 4·23-s + 24-s − 25-s + 26-s − 27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s + 1.20·11-s − 0.288·12-s − 0.277·13-s − 0.267·14-s + 0.516·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 0.917·19-s − 0.447·20-s − 0.218·21-s − 0.852·22-s − 0.834·23-s + 0.204·24-s − 1/5·25-s + 0.196·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9282 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9282 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9282\)    =    \(2 \cdot 3 \cdot 7 \cdot 13 \cdot 17\)
Sign: $-1$
Analytic conductor: \(74.1171\)
Root analytic conductor: \(8.60913\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9282,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.45800617712851304242406901649, −6.73923389881749634534638981118, −6.25107023730850090085434890859, −5.31116577578815117257960775111, −4.59419737059585346085004798143, −3.81573897310285502225928038435, −3.12219459560787330396995740932, −1.84099962745433140478843216704, −1.08083103029023070031534456187, 0, 1.08083103029023070031534456187, 1.84099962745433140478843216704, 3.12219459560787330396995740932, 3.81573897310285502225928038435, 4.59419737059585346085004798143, 5.31116577578815117257960775111, 6.25107023730850090085434890859, 6.73923389881749634534638981118, 7.45800617712851304242406901649

Graph of the $Z$-function along the critical line