L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s − 4·7-s − 8-s + 9-s − 10-s + 2·11-s − 12-s + 2·13-s + 4·14-s − 15-s + 16-s − 18-s + 20-s + 4·21-s − 2·22-s − 6·23-s + 24-s + 25-s − 2·26-s − 27-s − 4·28-s − 8·29-s + 30-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.603·11-s − 0.288·12-s + 0.554·13-s + 1.06·14-s − 0.258·15-s + 1/4·16-s − 0.235·18-s + 0.223·20-s + 0.872·21-s − 0.426·22-s − 1.25·23-s + 0.204·24-s + 1/5·25-s − 0.392·26-s − 0.192·27-s − 0.755·28-s − 1.48·29-s + 0.182·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 31 | \( 1 - T \) |
good | 7 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 12 T + p T^{2} \) |
| 53 | \( 1 + 2 T + p T^{2} \) |
| 59 | \( 1 + 12 T + p T^{2} \) |
| 61 | \( 1 + 8 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 - 4 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 + 16 T + p T^{2} \) |
| 89 | \( 1 + 2 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.534594717064336130666715430523, −9.207300510016150763551696077290, −7.974541105070685887047203827230, −6.95018498210161112866625904639, −6.22342721999705754607411089249, −5.74121198175174955405158159487, −4.12868584034124904821795547451, −3.08767430293436869589837592307, −1.62520323071370484505077009350, 0,
1.62520323071370484505077009350, 3.08767430293436869589837592307, 4.12868584034124904821795547451, 5.74121198175174955405158159487, 6.22342721999705754607411089249, 6.95018498210161112866625904639, 7.974541105070685887047203827230, 9.207300510016150763551696077290, 9.534594717064336130666715430523