L(s) = 1 | + i·2-s + i·3-s − 4-s + (−1 + 2i)5-s − 6-s + i·7-s − i·8-s − 9-s + (−2 − i)10-s − 3·11-s − i·12-s + 4i·13-s − 14-s + (−2 − i)15-s + 16-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s + (−0.447 + 0.894i)5-s − 0.408·6-s + 0.377i·7-s − 0.353i·8-s − 0.333·9-s + (−0.632 − 0.316i)10-s − 0.904·11-s − 0.288i·12-s + 1.10i·13-s − 0.267·14-s + (−0.516 − 0.258i)15-s + 0.250·16-s + ⋯ |
Λ(s)=(=(930s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(930s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
930
= 2⋅3⋅5⋅31
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
7.42608 |
Root analytic conductor: |
2.72508 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ930(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 930, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
0.305556−0.494401i |
L(21) |
≈ |
0.305556−0.494401i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1−iT |
| 5 | 1+(1−2i)T |
| 31 | 1+T |
good | 7 | 1−iT−7T2 |
| 11 | 1+3T+11T2 |
| 13 | 1−4iT−13T2 |
| 17 | 1−17T2 |
| 19 | 1−T+19T2 |
| 23 | 1+5iT−23T2 |
| 29 | 1+2T+29T2 |
| 37 | 1−4iT−37T2 |
| 41 | 1+10T+41T2 |
| 43 | 1−5iT−43T2 |
| 47 | 1+8iT−47T2 |
| 53 | 1+5iT−53T2 |
| 59 | 1−6T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1−2iT−67T2 |
| 71 | 1+5T+71T2 |
| 73 | 1−7iT−73T2 |
| 79 | 1+3T+79T2 |
| 83 | 1−2iT−83T2 |
| 89 | 1+T+89T2 |
| 97 | 1+10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.44008843758896986894137273194, −9.860805618875227593481910657206, −8.800218478491754257952755942119, −8.154227292792793092578435497507, −7.14030689535698297919481576656, −6.48148449414858039901327596220, −5.43887489988290248425580158710, −4.52910691332778202043452752015, −3.54288568469892368614829201748, −2.40531935874045117295226274603,
0.27446055720847916293724345868, 1.51866075989609014854314795593, 2.92225776139589165403907765123, 3.92168080914936600301426973713, 5.12899848982183335966401969341, 5.69711276393135988105786699428, 7.30237574232669532135802547708, 7.86416968838300278318250902741, 8.627607386761118794623801111332, 9.545010160273345635842361833700