L(s) = 1 | + 2-s + (−0.5 − 0.866i)3-s + 4-s + (−0.5 + 0.866i)5-s + (−0.5 − 0.866i)6-s + (0.5 + 0.866i)7-s + 8-s + (−0.499 + 0.866i)9-s + (−0.5 + 0.866i)10-s + (−2.5 + 4.33i)11-s + (−0.5 − 0.866i)12-s + (−2 + 3.46i)13-s + (0.5 + 0.866i)14-s + 0.999·15-s + 16-s + (1 + 1.73i)17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.288 − 0.499i)3-s + 0.5·4-s + (−0.223 + 0.387i)5-s + (−0.204 − 0.353i)6-s + (0.188 + 0.327i)7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 + 0.273i)10-s + (−0.753 + 1.30i)11-s + (−0.144 − 0.249i)12-s + (−0.554 + 0.960i)13-s + (0.133 + 0.231i)14-s + 0.258·15-s + 0.250·16-s + (0.242 + 0.420i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.275 - 0.961i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.275 - 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.38794 + 1.04654i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38794 + 1.04654i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-3.5 + 4.33i)T \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.5 - 4.33i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2 - 3.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1 - 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 - 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 4T + 23T^{2} \) |
| 29 | \( 1 - 3T + 29T^{2} \) |
| 37 | \( 1 + (-2 - 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2 - 3.46i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 2T + 47T^{2} \) |
| 53 | \( 1 + (1.5 - 2.59i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.5 + 2.59i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4 - 6.92i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1 - 1.73i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.5 - 7.79i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 18T + 89T^{2} \) |
| 97 | \( 1 + T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26766778397209428236956838925, −9.679312627270711473262758799626, −8.223942431847154701535969405585, −7.55644136112322467177848497916, −6.77213598447190992149365961721, −5.94985397647227030359309795216, −4.91328561041160248966696011618, −4.15903527634336895777912034697, −2.68985758998949375222145606903, −1.83497885094960504484096930921,
0.65681548417145443507407451125, 2.70545766964029665005559027530, 3.58583723919905213035612411632, 4.70482354311543036645031617494, 5.37593847345605006537868557699, 6.12297997229029298466998079656, 7.40414112668966146621646301903, 8.107670220484163438870640559764, 9.040606803200149543593425769758, 10.27435505761476451009128576905