L(s) = 1 | + 2-s + (−0.5 − 0.866i)3-s + 4-s + (−0.5 + 0.866i)5-s + (−0.5 − 0.866i)6-s + (0.5 + 0.866i)7-s + 8-s + (−0.499 + 0.866i)9-s + (−0.5 + 0.866i)10-s + (−2.5 + 4.33i)11-s + (−0.5 − 0.866i)12-s + (−2 + 3.46i)13-s + (0.5 + 0.866i)14-s + 0.999·15-s + 16-s + (1 + 1.73i)17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.288 − 0.499i)3-s + 0.5·4-s + (−0.223 + 0.387i)5-s + (−0.204 − 0.353i)6-s + (0.188 + 0.327i)7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 + 0.273i)10-s + (−0.753 + 1.30i)11-s + (−0.144 − 0.249i)12-s + (−0.554 + 0.960i)13-s + (0.133 + 0.231i)14-s + 0.258·15-s + 0.250·16-s + (0.242 + 0.420i)17-s + ⋯ |
Λ(s)=(=(930s/2ΓC(s)L(s)(0.275−0.961i)Λ(2−s)
Λ(s)=(=(930s/2ΓC(s+1/2)L(s)(0.275−0.961i)Λ(1−s)
Degree: |
2 |
Conductor: |
930
= 2⋅3⋅5⋅31
|
Sign: |
0.275−0.961i
|
Analytic conductor: |
7.42608 |
Root analytic conductor: |
2.72508 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ930(211,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 930, ( :1/2), 0.275−0.961i)
|
Particular Values
L(1) |
≈ |
1.38794+1.04654i |
L(21) |
≈ |
1.38794+1.04654i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+(0.5+0.866i)T |
| 5 | 1+(0.5−0.866i)T |
| 31 | 1+(−3.5+4.33i)T |
good | 7 | 1+(−0.5−0.866i)T+(−3.5+6.06i)T2 |
| 11 | 1+(2.5−4.33i)T+(−5.5−9.52i)T2 |
| 13 | 1+(2−3.46i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−1−1.73i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1−1.73i)T+(−9.5+16.4i)T2 |
| 23 | 1+4T+23T2 |
| 29 | 1−3T+29T2 |
| 37 | 1+(−2−3.46i)T+(−18.5+32.0i)T2 |
| 41 | 1+(2−3.46i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2−3.46i)T+(−21.5+37.2i)T2 |
| 47 | 1−2T+47T2 |
| 53 | 1+(1.5−2.59i)T+(−26.5−45.8i)T2 |
| 59 | 1+(1.5+2.59i)T+(−29.5+51.0i)T2 |
| 61 | 1+61T2 |
| 67 | 1+(−2+3.46i)T+(−33.5−58.0i)T2 |
| 71 | 1+(4−6.92i)T+(−35.5−61.4i)T2 |
| 73 | 1+(1−1.73i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−39.5+68.4i)T2 |
| 83 | 1+(4.5−7.79i)T+(−41.5−71.8i)T2 |
| 89 | 1−18T+89T2 |
| 97 | 1+T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.26766778397209428236956838925, −9.679312627270711473262758799626, −8.223942431847154701535969405585, −7.55644136112322467177848497916, −6.77213598447190992149365961721, −5.94985397647227030359309795216, −4.91328561041160248966696011618, −4.15903527634336895777912034697, −2.68985758998949375222145606903, −1.83497885094960504484096930921,
0.65681548417145443507407451125, 2.70545766964029665005559027530, 3.58583723919905213035612411632, 4.70482354311543036645031617494, 5.37593847345605006537868557699, 6.12297997229029298466998079656, 7.40414112668966146621646301903, 8.107670220484163438870640559764, 9.040606803200149543593425769758, 10.27435505761476451009128576905