L(s) = 1 | + (−0.366 − 1.36i)2-s + (−1.73 + i)4-s − 3.73·5-s + (−3 − 1.73i)7-s + (2 + 1.99i)8-s + (1.36 + 5.09i)10-s + (−1 − 1.73i)11-s + (−2.59 − 2.5i)13-s + (−1.26 + 4.73i)14-s + (1.99 − 3.46i)16-s + (−0.232 + 0.401i)17-s + (0.633 − 1.09i)19-s + (6.46 − 3.73i)20-s + (−1.99 + 2i)22-s + (4.09 + 7.09i)23-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.5i)4-s − 1.66·5-s + (−1.13 − 0.654i)7-s + (0.707 + 0.707i)8-s + (0.431 + 1.61i)10-s + (−0.301 − 0.522i)11-s + (−0.720 − 0.693i)13-s + (−0.338 + 1.26i)14-s + (0.499 − 0.866i)16-s + (−0.0562 + 0.0974i)17-s + (0.145 − 0.251i)19-s + (1.44 − 0.834i)20-s + (−0.426 + 0.426i)22-s + (0.854 + 1.48i)23-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(0.999−0.00641i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(0.999−0.00641i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
0.999−0.00641i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(829,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), 0.999−0.00641i)
|
Particular Values
L(1) |
≈ |
0.366004+0.00117338i |
L(21) |
≈ |
0.366004+0.00117338i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.366+1.36i)T |
| 3 | 1 |
| 13 | 1+(2.59+2.5i)T |
good | 5 | 1+3.73T+5T2 |
| 7 | 1+(3+1.73i)T+(3.5+6.06i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 17 | 1+(0.232−0.401i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.633+1.09i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−4.09−7.09i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.59−1.5i)T+(14.5−25.1i)T2 |
| 31 | 1−4.73iT−31T2 |
| 37 | 1+(−2.13−3.69i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−7.96+4.59i)T+(20.5−35.5i)T2 |
| 43 | 1+(−2.19−1.26i)T+(21.5+37.2i)T2 |
| 47 | 1+6.73iT−47T2 |
| 53 | 1−3.92iT−53T2 |
| 59 | 1+(0.267−0.464i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.866−0.5i)T+(30.5+52.8i)T2 |
| 67 | 1+(−3.63−6.29i)T+(−33.5+58.0i)T2 |
| 71 | 1+(8.02+4.63i)T+(35.5+61.4i)T2 |
| 73 | 1+1.73iT−73T2 |
| 79 | 1+10.3T+79T2 |
| 83 | 1+1.46T+83T2 |
| 89 | 1+(6.46−3.73i)T+(44.5−77.0i)T2 |
| 97 | 1+(5.19+3i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20989664286557230903905026898, −9.330917448693990929191878802923, −8.478940547346432152694693246186, −7.53280313641319794177888645664, −7.14932147757115709517479286351, −5.45471719228046036740070047748, −4.35373340253496416742980542653, −3.45167755170296340760670696413, −2.98344056565803552958265904600, −0.78726659694127066295922914397,
0.29352901180768094508545508622, 2.75267072976103626288913748477, 4.06390299523671024597746831004, 4.68556433394280365489396628863, 5.93555087171879829135817763144, 6.86694200402559778225905857166, 7.46062638125285613871596881402, 8.236460205087720361808172440822, 9.148060471885340380039605584588, 9.704611788325397638888756522272