L(s) = 1 | + (−0.366 − 1.36i)2-s + (−1.73 + i)4-s − 3.73·5-s + (−3 − 1.73i)7-s + (2 + 1.99i)8-s + (1.36 + 5.09i)10-s + (−1 − 1.73i)11-s + (−2.59 − 2.5i)13-s + (−1.26 + 4.73i)14-s + (1.99 − 3.46i)16-s + (−0.232 + 0.401i)17-s + (0.633 − 1.09i)19-s + (6.46 − 3.73i)20-s + (−1.99 + 2i)22-s + (4.09 + 7.09i)23-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.5i)4-s − 1.66·5-s + (−1.13 − 0.654i)7-s + (0.707 + 0.707i)8-s + (0.431 + 1.61i)10-s + (−0.301 − 0.522i)11-s + (−0.720 − 0.693i)13-s + (−0.338 + 1.26i)14-s + (0.499 − 0.866i)16-s + (−0.0562 + 0.0974i)17-s + (0.145 − 0.251i)19-s + (1.44 − 0.834i)20-s + (−0.426 + 0.426i)22-s + (0.854 + 1.48i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.00641i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.00641i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.366004 + 0.00117338i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.366004 + 0.00117338i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.366 + 1.36i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (2.59 + 2.5i)T \) |
good | 5 | \( 1 + 3.73T + 5T^{2} \) |
| 7 | \( 1 + (3 + 1.73i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.232 - 0.401i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.633 + 1.09i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.09 - 7.09i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.59 - 1.5i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4.73iT - 31T^{2} \) |
| 37 | \( 1 + (-2.13 - 3.69i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-7.96 + 4.59i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.19 - 1.26i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 6.73iT - 47T^{2} \) |
| 53 | \( 1 - 3.92iT - 53T^{2} \) |
| 59 | \( 1 + (0.267 - 0.464i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.866 - 0.5i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.63 - 6.29i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (8.02 + 4.63i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 1.73iT - 73T^{2} \) |
| 79 | \( 1 + 10.3T + 79T^{2} \) |
| 83 | \( 1 + 1.46T + 83T^{2} \) |
| 89 | \( 1 + (6.46 - 3.73i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.19 + 3i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20989664286557230903905026898, −9.330917448693990929191878802923, −8.478940547346432152694693246186, −7.53280313641319794177888645664, −7.14932147757115709517479286351, −5.45471719228046036740070047748, −4.35373340253496416742980542653, −3.45167755170296340760670696413, −2.98344056565803552958265904600, −0.78726659694127066295922914397,
0.29352901180768094508545508622, 2.75267072976103626288913748477, 4.06390299523671024597746831004, 4.68556433394280365489396628863, 5.93555087171879829135817763144, 6.86694200402559778225905857166, 7.46062638125285613871596881402, 8.236460205087720361808172440822, 9.148060471885340380039605584588, 9.704611788325397638888756522272