L(s) = 1 | + (1.36 − 0.366i)2-s + (1.73 − i)4-s − 0.267·5-s + (−3 − 1.73i)7-s + (1.99 − 2i)8-s + (−0.366 + 0.0980i)10-s + (−1 − 1.73i)11-s + (2.59 + 2.5i)13-s + (−4.73 − 1.26i)14-s + (1.99 − 3.46i)16-s + (3.23 − 5.59i)17-s + (2.36 − 4.09i)19-s + (−0.464 + 0.267i)20-s + (−2 − 1.99i)22-s + (−1.09 − 1.90i)23-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.5i)4-s − 0.119·5-s + (−1.13 − 0.654i)7-s + (0.707 − 0.707i)8-s + (−0.115 + 0.0310i)10-s + (−0.301 − 0.522i)11-s + (0.720 + 0.693i)13-s + (−1.26 − 0.338i)14-s + (0.499 − 0.866i)16-s + (0.783 − 1.35i)17-s + (0.542 − 0.940i)19-s + (−0.103 + 0.0599i)20-s + (−0.426 − 0.426i)22-s + (−0.228 − 0.396i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00641 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00641 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.75456 - 1.74335i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.75456 - 1.74335i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 + 0.366i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-2.59 - 2.5i)T \) |
good | 5 | \( 1 + 0.267T + 5T^{2} \) |
| 7 | \( 1 + (3 + 1.73i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.23 + 5.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.36 + 4.09i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.09 + 1.90i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.59 + 1.5i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 1.26iT - 31T^{2} \) |
| 37 | \( 1 + (-3.86 - 6.69i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.03 + 0.598i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (8.19 + 4.73i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.26iT - 47T^{2} \) |
| 53 | \( 1 - 9.92iT - 53T^{2} \) |
| 59 | \( 1 + (3.73 - 6.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.36 - 9.29i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-11.0 - 6.36i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 1.73iT - 73T^{2} \) |
| 79 | \( 1 - 10.3T + 79T^{2} \) |
| 83 | \( 1 - 5.46T + 83T^{2} \) |
| 89 | \( 1 + (-0.464 + 0.267i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.19 - 3i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.927691409183327169359277012311, −9.344406681691370826421050342422, −7.949456959349357993508878631163, −7.00396500620774179454701122414, −6.39460065824097365589405066876, −5.44258615311702612758194650688, −4.37780148477006967609613668145, −3.45630077140752615472690908528, −2.67890572817001675659794805249, −0.861396753172196908325327668250,
1.89887000555132024580175752835, 3.29602147932287314197795783424, 3.74192087355765304226224865282, 5.21106432271597557731762028173, 5.94327190136883027051425537831, 6.51046030466102754969834702749, 7.78126065203882477100397371290, 8.236869317565539712142889930415, 9.612575597763893626074719480585, 10.27187932584092401935472616235