L(s) = 1 | + (1.36 − 0.366i)2-s + (1.73 − i)4-s − 0.267·5-s + (−3 − 1.73i)7-s + (1.99 − 2i)8-s + (−0.366 + 0.0980i)10-s + (−1 − 1.73i)11-s + (2.59 + 2.5i)13-s + (−4.73 − 1.26i)14-s + (1.99 − 3.46i)16-s + (3.23 − 5.59i)17-s + (2.36 − 4.09i)19-s + (−0.464 + 0.267i)20-s + (−2 − 1.99i)22-s + (−1.09 − 1.90i)23-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.5i)4-s − 0.119·5-s + (−1.13 − 0.654i)7-s + (0.707 − 0.707i)8-s + (−0.115 + 0.0310i)10-s + (−0.301 − 0.522i)11-s + (0.720 + 0.693i)13-s + (−1.26 − 0.338i)14-s + (0.499 − 0.866i)16-s + (0.783 − 1.35i)17-s + (0.542 − 0.940i)19-s + (−0.103 + 0.0599i)20-s + (−0.426 − 0.426i)22-s + (−0.228 − 0.396i)23-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(0.00641+0.999i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(0.00641+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
0.00641+0.999i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(829,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), 0.00641+0.999i)
|
Particular Values
L(1) |
≈ |
1.75456−1.74335i |
L(21) |
≈ |
1.75456−1.74335i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.36+0.366i)T |
| 3 | 1 |
| 13 | 1+(−2.59−2.5i)T |
good | 5 | 1+0.267T+5T2 |
| 7 | 1+(3+1.73i)T+(3.5+6.06i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−3.23+5.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.36+4.09i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.09+1.90i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.59+1.5i)T+(14.5−25.1i)T2 |
| 31 | 1+1.26iT−31T2 |
| 37 | 1+(−3.86−6.69i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.03+0.598i)T+(20.5−35.5i)T2 |
| 43 | 1+(8.19+4.73i)T+(21.5+37.2i)T2 |
| 47 | 1−3.26iT−47T2 |
| 53 | 1−9.92iT−53T2 |
| 59 | 1+(3.73−6.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(0.866+0.5i)T+(30.5+52.8i)T2 |
| 67 | 1+(−5.36−9.29i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−11.0−6.36i)T+(35.5+61.4i)T2 |
| 73 | 1+1.73iT−73T2 |
| 79 | 1−10.3T+79T2 |
| 83 | 1−5.46T+83T2 |
| 89 | 1+(−0.464+0.267i)T+(44.5−77.0i)T2 |
| 97 | 1+(−5.19−3i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.927691409183327169359277012311, −9.344406681691370826421050342422, −7.949456959349357993508878631163, −7.00396500620774179454701122414, −6.39460065824097365589405066876, −5.44258615311702612758194650688, −4.37780148477006967609613668145, −3.45630077140752615472690908528, −2.67890572817001675659794805249, −0.861396753172196908325327668250,
1.89887000555132024580175752835, 3.29602147932287314197795783424, 3.74192087355765304226224865282, 5.21106432271597557731762028173, 5.94327190136883027051425537831, 6.51046030466102754969834702749, 7.78126065203882477100397371290, 8.236869317565539712142889930415, 9.612575597763893626074719480585, 10.27187932584092401935472616235