Properties

Label 2-936-104.101-c1-0-41
Degree 22
Conductor 936936
Sign 0.620+0.783i0.620 + 0.783i
Analytic cond. 7.473997.47399
Root an. cond. 2.733862.73386
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.15 − 0.818i)2-s + (0.659 + 1.88i)4-s + 2.34·5-s + (3.69 + 2.13i)7-s + (0.784 − 2.71i)8-s + (−2.70 − 1.91i)10-s + (−1.33 − 2.31i)11-s + (−2.96 − 2.05i)13-s + (−2.51 − 5.48i)14-s + (−3.12 + 2.49i)16-s + (2.86 − 4.95i)17-s + (3.67 − 6.35i)19-s + (1.54 + 4.42i)20-s + (−0.353 + 3.75i)22-s + (−1.42 − 2.46i)23-s + ⋯
L(s)  = 1  + (−0.815 − 0.578i)2-s + (0.329 + 0.943i)4-s + 1.04·5-s + (1.39 + 0.806i)7-s + (0.277 − 0.960i)8-s + (−0.855 − 0.606i)10-s + (−0.402 − 0.697i)11-s + (−0.821 − 0.570i)13-s + (−0.672 − 1.46i)14-s + (−0.782 + 0.623i)16-s + (0.694 − 1.20i)17-s + (0.842 − 1.45i)19-s + (0.346 + 0.989i)20-s + (−0.0752 + 0.801i)22-s + (−0.296 − 0.514i)23-s + ⋯

Functional equation

Λ(s)=(936s/2ΓC(s)L(s)=((0.620+0.783i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.620 + 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(936s/2ΓC(s+1/2)L(s)=((0.620+0.783i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.620 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 936936    =    2332132^{3} \cdot 3^{2} \cdot 13
Sign: 0.620+0.783i0.620 + 0.783i
Analytic conductor: 7.473997.47399
Root analytic conductor: 2.733862.73386
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ936(829,)\chi_{936} (829, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 936, ( :1/2), 0.620+0.783i)(2,\ 936,\ (\ :1/2),\ 0.620 + 0.783i)

Particular Values

L(1)L(1) \approx 1.319610.638279i1.31961 - 0.638279i
L(12)L(\frac12) \approx 1.319610.638279i1.31961 - 0.638279i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.15+0.818i)T 1 + (1.15 + 0.818i)T
3 1 1
13 1+(2.96+2.05i)T 1 + (2.96 + 2.05i)T
good5 12.34T+5T2 1 - 2.34T + 5T^{2}
7 1+(3.692.13i)T+(3.5+6.06i)T2 1 + (-3.69 - 2.13i)T + (3.5 + 6.06i)T^{2}
11 1+(1.33+2.31i)T+(5.5+9.52i)T2 1 + (1.33 + 2.31i)T + (-5.5 + 9.52i)T^{2}
17 1+(2.86+4.95i)T+(8.514.7i)T2 1 + (-2.86 + 4.95i)T + (-8.5 - 14.7i)T^{2}
19 1+(3.67+6.35i)T+(9.516.4i)T2 1 + (-3.67 + 6.35i)T + (-9.5 - 16.4i)T^{2}
23 1+(1.42+2.46i)T+(11.5+19.9i)T2 1 + (1.42 + 2.46i)T + (-11.5 + 19.9i)T^{2}
29 1+(4.01+2.31i)T+(14.525.1i)T2 1 + (-4.01 + 2.31i)T + (14.5 - 25.1i)T^{2}
31 16.91iT31T2 1 - 6.91iT - 31T^{2}
37 1+(0.8061.39i)T+(18.5+32.0i)T2 1 + (-0.806 - 1.39i)T + (-18.5 + 32.0i)T^{2}
41 1+(5.523.18i)T+(20.535.5i)T2 1 + (5.52 - 3.18i)T + (20.5 - 35.5i)T^{2}
43 1+(3.982.29i)T+(21.5+37.2i)T2 1 + (-3.98 - 2.29i)T + (21.5 + 37.2i)T^{2}
47 14.83iT47T2 1 - 4.83iT - 47T^{2}
53 1+2.67iT53T2 1 + 2.67iT - 53T^{2}
59 1+(3.87+6.71i)T+(29.551.0i)T2 1 + (-3.87 + 6.71i)T + (-29.5 - 51.0i)T^{2}
61 1+(1.83+1.05i)T+(30.5+52.8i)T2 1 + (1.83 + 1.05i)T + (30.5 + 52.8i)T^{2}
67 1+(4.327.48i)T+(33.5+58.0i)T2 1 + (-4.32 - 7.48i)T + (-33.5 + 58.0i)T^{2}
71 1+(11.66.70i)T+(35.5+61.4i)T2 1 + (-11.6 - 6.70i)T + (35.5 + 61.4i)T^{2}
73 1+10.5iT73T2 1 + 10.5iT - 73T^{2}
79 11.92T+79T2 1 - 1.92T + 79T^{2}
83 1+2.73T+83T2 1 + 2.73T + 83T^{2}
89 1+(15.08.69i)T+(44.577.0i)T2 1 + (15.0 - 8.69i)T + (44.5 - 77.0i)T^{2}
97 1+(4.062.34i)T+(48.5+84.0i)T2 1 + (-4.06 - 2.34i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.841377365332131565669701396808, −9.247747614346572525478864813117, −8.354056162544480061629230384331, −7.74770394509441098494389075127, −6.68467594214425629197630358752, −5.36075230722845776132181587527, −4.89010560371137725176796670536, −2.92362559112110092220156329849, −2.37748624579232213439399312300, −1.02071153278522434655643085099, 1.45447880747869572309829988281, 2.06195298244950865722296913499, 4.14870362658633280299555646193, 5.25599602307381577135192059531, 5.81269548330057922486612521665, 7.02831584098339947659568004761, 7.74221080520891764969262862979, 8.285146456065928170850051901142, 9.536021549329543842716901231780, 10.07218460772255039435339020069

Graph of the ZZ-function along the critical line