L(s) = 1 | + (−1.15 − 0.818i)2-s + (0.659 + 1.88i)4-s + 2.34·5-s + (3.69 + 2.13i)7-s + (0.784 − 2.71i)8-s + (−2.70 − 1.91i)10-s + (−1.33 − 2.31i)11-s + (−2.96 − 2.05i)13-s + (−2.51 − 5.48i)14-s + (−3.12 + 2.49i)16-s + (2.86 − 4.95i)17-s + (3.67 − 6.35i)19-s + (1.54 + 4.42i)20-s + (−0.353 + 3.75i)22-s + (−1.42 − 2.46i)23-s + ⋯ |
L(s) = 1 | + (−0.815 − 0.578i)2-s + (0.329 + 0.943i)4-s + 1.04·5-s + (1.39 + 0.806i)7-s + (0.277 − 0.960i)8-s + (−0.855 − 0.606i)10-s + (−0.402 − 0.697i)11-s + (−0.821 − 0.570i)13-s + (−0.672 − 1.46i)14-s + (−0.782 + 0.623i)16-s + (0.694 − 1.20i)17-s + (0.842 − 1.45i)19-s + (0.346 + 0.989i)20-s + (−0.0752 + 0.801i)22-s + (−0.296 − 0.514i)23-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(0.620+0.783i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(0.620+0.783i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
0.620+0.783i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(829,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), 0.620+0.783i)
|
Particular Values
L(1) |
≈ |
1.31961−0.638279i |
L(21) |
≈ |
1.31961−0.638279i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.15+0.818i)T |
| 3 | 1 |
| 13 | 1+(2.96+2.05i)T |
good | 5 | 1−2.34T+5T2 |
| 7 | 1+(−3.69−2.13i)T+(3.5+6.06i)T2 |
| 11 | 1+(1.33+2.31i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−2.86+4.95i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.67+6.35i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.42+2.46i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−4.01+2.31i)T+(14.5−25.1i)T2 |
| 31 | 1−6.91iT−31T2 |
| 37 | 1+(−0.806−1.39i)T+(−18.5+32.0i)T2 |
| 41 | 1+(5.52−3.18i)T+(20.5−35.5i)T2 |
| 43 | 1+(−3.98−2.29i)T+(21.5+37.2i)T2 |
| 47 | 1−4.83iT−47T2 |
| 53 | 1+2.67iT−53T2 |
| 59 | 1+(−3.87+6.71i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1.83+1.05i)T+(30.5+52.8i)T2 |
| 67 | 1+(−4.32−7.48i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−11.6−6.70i)T+(35.5+61.4i)T2 |
| 73 | 1+10.5iT−73T2 |
| 79 | 1−1.92T+79T2 |
| 83 | 1+2.73T+83T2 |
| 89 | 1+(15.0−8.69i)T+(44.5−77.0i)T2 |
| 97 | 1+(−4.06−2.34i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.841377365332131565669701396808, −9.247747614346572525478864813117, −8.354056162544480061629230384331, −7.74770394509441098494389075127, −6.68467594214425629197630358752, −5.36075230722845776132181587527, −4.89010560371137725176796670536, −2.92362559112110092220156329849, −2.37748624579232213439399312300, −1.02071153278522434655643085099,
1.45447880747869572309829988281, 2.06195298244950865722296913499, 4.14870362658633280299555646193, 5.25599602307381577135192059531, 5.81269548330057922486612521665, 7.02831584098339947659568004761, 7.74221080520891764969262862979, 8.285146456065928170850051901142, 9.536021549329543842716901231780, 10.07218460772255039435339020069