L(s) = 1 | + (2.43 + 2.43i)5-s + (−0.0623 + 0.232i)7-s + (0.655 + 2.44i)11-s + (0.765 + 3.52i)13-s + (0.156 + 0.270i)17-s + (−4.72 − 1.26i)19-s + (1.56 − 2.70i)23-s + 6.84i·25-s + (0.251 + 0.145i)29-s + (−2.38 + 2.38i)31-s + (−0.717 + 0.414i)35-s + (−2.72 + 0.730i)37-s + (5.24 − 1.40i)41-s + (−7.61 + 4.39i)43-s + (9.47 − 9.47i)47-s + ⋯ |
L(s) = 1 | + (1.08 + 1.08i)5-s + (−0.0235 + 0.0878i)7-s + (0.197 + 0.737i)11-s + (0.212 + 0.977i)13-s + (0.0378 + 0.0655i)17-s + (−1.08 − 0.290i)19-s + (0.326 − 0.565i)23-s + 1.36i·25-s + (0.0466 + 0.0269i)29-s + (−0.427 + 0.427i)31-s + (−0.121 + 0.0700i)35-s + (−0.448 + 0.120i)37-s + (0.819 − 0.219i)41-s + (−1.16 + 0.670i)43-s + (1.38 − 1.38i)47-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(0.177−0.984i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(0.177−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
0.177−0.984i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(305,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), 0.177−0.984i)
|
Particular Values
L(1) |
≈ |
1.38918+1.16119i |
L(21) |
≈ |
1.38918+1.16119i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(−0.765−3.52i)T |
good | 5 | 1+(−2.43−2.43i)T+5iT2 |
| 7 | 1+(0.0623−0.232i)T+(−6.06−3.5i)T2 |
| 11 | 1+(−0.655−2.44i)T+(−9.52+5.5i)T2 |
| 17 | 1+(−0.156−0.270i)T+(−8.5+14.7i)T2 |
| 19 | 1+(4.72+1.26i)T+(16.4+9.5i)T2 |
| 23 | 1+(−1.56+2.70i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−0.251−0.145i)T+(14.5+25.1i)T2 |
| 31 | 1+(2.38−2.38i)T−31iT2 |
| 37 | 1+(2.72−0.730i)T+(32.0−18.5i)T2 |
| 41 | 1+(−5.24+1.40i)T+(35.5−20.5i)T2 |
| 43 | 1+(7.61−4.39i)T+(21.5−37.2i)T2 |
| 47 | 1+(−9.47+9.47i)T−47iT2 |
| 53 | 1−7.02iT−53T2 |
| 59 | 1+(4.77+1.28i)T+(51.0+29.5i)T2 |
| 61 | 1+(−1.10−1.91i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.0954+0.356i)T+(−58.0+33.5i)T2 |
| 71 | 1+(−2.10+7.84i)T+(−61.4−35.5i)T2 |
| 73 | 1+(11.1+11.1i)T+73iT2 |
| 79 | 1−9.82T+79T2 |
| 83 | 1+(−10.6−10.6i)T+83iT2 |
| 89 | 1+(−3.43−12.8i)T+(−77.0+44.5i)T2 |
| 97 | 1+(−10.7−2.86i)T+(84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.47634659534129371288254751303, −9.364496036092380009292077309196, −8.871786149116413435761674405187, −7.49808050755208648464395667501, −6.64531515087820503252076409179, −6.24188819819334776774013883702, −5.02508196931163738408796156946, −3.93387266707176818505828712689, −2.60722818423463892706339148879, −1.82175507435275589396155163765,
0.870297577756179951669129821198, 2.11433310989282674575220159123, 3.49741776876675517727243917886, 4.69688618392329317999597022590, 5.66690608818552736529395091612, 6.08640910472133363742004158945, 7.40662173334387907515932894452, 8.500104753053459921737894616993, 8.914528186968929046243254537523, 9.861835157637459501183411230748