L(s) = 1 | + (2.43 + 2.43i)5-s + (−0.0623 + 0.232i)7-s + (0.655 + 2.44i)11-s + (0.765 + 3.52i)13-s + (0.156 + 0.270i)17-s + (−4.72 − 1.26i)19-s + (1.56 − 2.70i)23-s + 6.84i·25-s + (0.251 + 0.145i)29-s + (−2.38 + 2.38i)31-s + (−0.717 + 0.414i)35-s + (−2.72 + 0.730i)37-s + (5.24 − 1.40i)41-s + (−7.61 + 4.39i)43-s + (9.47 − 9.47i)47-s + ⋯ |
L(s) = 1 | + (1.08 + 1.08i)5-s + (−0.0235 + 0.0878i)7-s + (0.197 + 0.737i)11-s + (0.212 + 0.977i)13-s + (0.0378 + 0.0655i)17-s + (−1.08 − 0.290i)19-s + (0.326 − 0.565i)23-s + 1.36i·25-s + (0.0466 + 0.0269i)29-s + (−0.427 + 0.427i)31-s + (−0.121 + 0.0700i)35-s + (−0.448 + 0.120i)37-s + (0.819 − 0.219i)41-s + (−1.16 + 0.670i)43-s + (1.38 − 1.38i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.177 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.177 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.38918 + 1.16119i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38918 + 1.16119i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-0.765 - 3.52i)T \) |
good | 5 | \( 1 + (-2.43 - 2.43i)T + 5iT^{2} \) |
| 7 | \( 1 + (0.0623 - 0.232i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-0.655 - 2.44i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-0.156 - 0.270i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.72 + 1.26i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.56 + 2.70i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.251 - 0.145i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.38 - 2.38i)T - 31iT^{2} \) |
| 37 | \( 1 + (2.72 - 0.730i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-5.24 + 1.40i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (7.61 - 4.39i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-9.47 + 9.47i)T - 47iT^{2} \) |
| 53 | \( 1 - 7.02iT - 53T^{2} \) |
| 59 | \( 1 + (4.77 + 1.28i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.10 - 1.91i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.0954 + 0.356i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-2.10 + 7.84i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (11.1 + 11.1i)T + 73iT^{2} \) |
| 79 | \( 1 - 9.82T + 79T^{2} \) |
| 83 | \( 1 + (-10.6 - 10.6i)T + 83iT^{2} \) |
| 89 | \( 1 + (-3.43 - 12.8i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-10.7 - 2.86i)T + (84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47634659534129371288254751303, −9.364496036092380009292077309196, −8.871786149116413435761674405187, −7.49808050755208648464395667501, −6.64531515087820503252076409179, −6.24188819819334776774013883702, −5.02508196931163738408796156946, −3.93387266707176818505828712689, −2.60722818423463892706339148879, −1.82175507435275589396155163765,
0.870297577756179951669129821198, 2.11433310989282674575220159123, 3.49741776876675517727243917886, 4.69688618392329317999597022590, 5.66690608818552736529395091612, 6.08640910472133363742004158945, 7.40662173334387907515932894452, 8.500104753053459921737894616993, 8.914528186968929046243254537523, 9.861835157637459501183411230748