L(s) = 1 | + (−0.661 + 0.661i)5-s + (−2.79 − 0.750i)7-s + (4.25 − 1.13i)11-s + (1.70 + 3.17i)13-s + (−0.870 − 1.50i)17-s + (−0.589 + 2.20i)19-s + (1.96 − 3.40i)23-s + 4.12i·25-s + (4.62 + 2.67i)29-s + (4.82 + 4.82i)31-s + (2.34 − 1.35i)35-s + (2.86 + 10.6i)37-s + (−1.04 − 3.88i)41-s + (6.62 − 3.82i)43-s + (6.84 + 6.84i)47-s + ⋯ |
L(s) = 1 | + (−0.295 + 0.295i)5-s + (−1.05 − 0.283i)7-s + (1.28 − 0.343i)11-s + (0.471 + 0.881i)13-s + (−0.211 − 0.365i)17-s + (−0.135 + 0.505i)19-s + (0.409 − 0.709i)23-s + 0.825i·25-s + (0.859 + 0.495i)29-s + (0.867 + 0.867i)31-s + (0.396 − 0.229i)35-s + (0.470 + 1.75i)37-s + (−0.162 − 0.606i)41-s + (1.00 − 0.583i)43-s + (0.998 + 0.998i)47-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(0.773−0.634i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(0.773−0.634i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
0.773−0.634i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), 0.773−0.634i)
|
Particular Values
L(1) |
≈ |
1.29579+0.463579i |
L(21) |
≈ |
1.29579+0.463579i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(−1.70−3.17i)T |
good | 5 | 1+(0.661−0.661i)T−5iT2 |
| 7 | 1+(2.79+0.750i)T+(6.06+3.5i)T2 |
| 11 | 1+(−4.25+1.13i)T+(9.52−5.5i)T2 |
| 17 | 1+(0.870+1.50i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.589−2.20i)T+(−16.4−9.5i)T2 |
| 23 | 1+(−1.96+3.40i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−4.62−2.67i)T+(14.5+25.1i)T2 |
| 31 | 1+(−4.82−4.82i)T+31iT2 |
| 37 | 1+(−2.86−10.6i)T+(−32.0+18.5i)T2 |
| 41 | 1+(1.04+3.88i)T+(−35.5+20.5i)T2 |
| 43 | 1+(−6.62+3.82i)T+(21.5−37.2i)T2 |
| 47 | 1+(−6.84−6.84i)T+47iT2 |
| 53 | 1−8.89iT−53T2 |
| 59 | 1+(−1.63+6.08i)T+(−51.0−29.5i)T2 |
| 61 | 1+(2.39+4.15i)T+(−30.5+52.8i)T2 |
| 67 | 1+(9.52−2.55i)T+(58.0−33.5i)T2 |
| 71 | 1+(2.88+0.771i)T+(61.4+35.5i)T2 |
| 73 | 1+(0.315−0.315i)T−73iT2 |
| 79 | 1+1.75T+79T2 |
| 83 | 1+(−9.41+9.41i)T−83iT2 |
| 89 | 1+(−12.6+3.40i)T+(77.0−44.5i)T2 |
| 97 | 1+(1.85−6.91i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.17563475184700899862078287199, −9.170774016672123199752214687705, −8.758035353419359508527261193952, −7.45687011853990655826260151259, −6.54531133185340228053308355867, −6.26996205615264666348034439590, −4.67514833716136737959276498930, −3.76251647459368676739284365776, −2.93253322406729663656339954880, −1.19263927847696726227444447487,
0.792403382045317190891647891596, 2.52937589748004598775113026257, 3.67625204633903732110027962427, 4.47607695828676785598426958631, 5.86267878411726954592086857836, 6.41362148428183627606316333769, 7.40807777249822326676154708612, 8.422871698388466896229442709095, 9.172119416999286594953829310530, 9.833533250900768816930129656504