L(s) = 1 | + (−2.65 − 2.65i)5-s + (1.47 − 0.396i)7-s + (−4.40 − 1.18i)11-s + (−2.78 + 2.29i)13-s + (−2.30 + 3.98i)17-s + (0.611 + 2.28i)19-s + (3.26 + 5.64i)23-s + 9.11i·25-s + (6.53 − 3.77i)29-s + (3.52 − 3.52i)31-s + (−4.98 − 2.87i)35-s + (−1.56 + 5.84i)37-s + (0.0148 − 0.0553i)41-s + (−2.57 − 1.48i)43-s + (−7.10 + 7.10i)47-s + ⋯ |
L(s) = 1 | + (−1.18 − 1.18i)5-s + (0.559 − 0.149i)7-s + (−1.32 − 0.356i)11-s + (−0.771 + 0.636i)13-s + (−0.557 + 0.966i)17-s + (0.140 + 0.523i)19-s + (0.679 + 1.17i)23-s + 1.82i·25-s + (1.21 − 0.701i)29-s + (0.633 − 0.633i)31-s + (−0.842 − 0.486i)35-s + (−0.257 + 0.961i)37-s + (0.00231 − 0.00863i)41-s + (−0.393 − 0.226i)43-s + (−1.03 + 1.03i)47-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(−0.473−0.880i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(−0.473−0.880i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
−0.473−0.880i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(665,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), −0.473−0.880i)
|
Particular Values
L(1) |
≈ |
0.157350+0.263387i |
L(21) |
≈ |
0.157350+0.263387i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(2.78−2.29i)T |
good | 5 | 1+(2.65+2.65i)T+5iT2 |
| 7 | 1+(−1.47+0.396i)T+(6.06−3.5i)T2 |
| 11 | 1+(4.40+1.18i)T+(9.52+5.5i)T2 |
| 17 | 1+(2.30−3.98i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.611−2.28i)T+(−16.4+9.5i)T2 |
| 23 | 1+(−3.26−5.64i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−6.53+3.77i)T+(14.5−25.1i)T2 |
| 31 | 1+(−3.52+3.52i)T−31iT2 |
| 37 | 1+(1.56−5.84i)T+(−32.0−18.5i)T2 |
| 41 | 1+(−0.0148+0.0553i)T+(−35.5−20.5i)T2 |
| 43 | 1+(2.57+1.48i)T+(21.5+37.2i)T2 |
| 47 | 1+(7.10−7.10i)T−47iT2 |
| 53 | 1−8.48iT−53T2 |
| 59 | 1+(2.84+10.6i)T+(−51.0+29.5i)T2 |
| 61 | 1+(0.615−1.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(8.23+2.20i)T+(58.0+33.5i)T2 |
| 71 | 1+(12.9−3.46i)T+(61.4−35.5i)T2 |
| 73 | 1+(−8.01−8.01i)T+73iT2 |
| 79 | 1+12.4T+79T2 |
| 83 | 1+(9.98+9.98i)T+83iT2 |
| 89 | 1+(−0.222−0.0596i)T+(77.0+44.5i)T2 |
| 97 | 1+(2.90+10.8i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.35768323198949693947443475047, −9.417958401605798280823698763450, −8.288856599673766186847239805818, −8.113837014778610545800705016177, −7.23032435774558036168162806614, −5.86510799062719165412684425288, −4.75924735501910634674974808225, −4.42084698872520432842504392794, −3.06658090851243117207296608657, −1.45903954056284834626876222292,
0.14504860070980349765094815645, 2.58063483372013207819488003851, 3.05990166339890862057166331651, 4.60500166754350479594516390358, 5.11613287577145948707939285593, 6.72414805246658522523536246189, 7.23285401997291221884523277376, 7.990637844896354260491271137119, 8.720690316582211631338316124591, 10.15158284881804748568486559937