L(s) = 1 | + (−1.79 + 1.79i)5-s + (1.02 + 3.83i)7-s + (1.05 − 3.95i)11-s + (1.54 + 3.25i)13-s + (1.68 − 2.91i)17-s + (−7.63 + 2.04i)19-s + (1.54 + 2.67i)23-s − 1.41i·25-s + (−7.02 + 4.05i)29-s + (0.618 + 0.618i)31-s + (−8.70 − 5.02i)35-s + (−8.92 − 2.39i)37-s + (−6.25 − 1.67i)41-s + (8.40 + 4.85i)43-s + (−4.37 − 4.37i)47-s + ⋯ |
L(s) = 1 | + (−0.801 + 0.801i)5-s + (0.388 + 1.44i)7-s + (0.319 − 1.19i)11-s + (0.428 + 0.903i)13-s + (0.408 − 0.707i)17-s + (−1.75 + 0.469i)19-s + (0.322 + 0.558i)23-s − 0.283i·25-s + (−1.30 + 0.753i)29-s + (0.111 + 0.111i)31-s + (−1.47 − 0.849i)35-s + (−1.46 − 0.392i)37-s + (−0.977 − 0.261i)41-s + (1.28 + 0.740i)43-s + (−0.637 − 0.637i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.741 - 0.670i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.741 - 0.670i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.348128 + 0.903530i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.348128 + 0.903530i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-1.54 - 3.25i)T \) |
good | 5 | \( 1 + (1.79 - 1.79i)T - 5iT^{2} \) |
| 7 | \( 1 + (-1.02 - 3.83i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-1.05 + 3.95i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.68 + 2.91i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (7.63 - 2.04i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.54 - 2.67i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (7.02 - 4.05i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.618 - 0.618i)T + 31iT^{2} \) |
| 37 | \( 1 + (8.92 + 2.39i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (6.25 + 1.67i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-8.40 - 4.85i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.37 + 4.37i)T + 47iT^{2} \) |
| 53 | \( 1 - 13.8iT - 53T^{2} \) |
| 59 | \( 1 + (-4.03 + 1.07i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (4.06 - 7.04i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.17 + 11.8i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (0.166 + 0.622i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (0.788 - 0.788i)T - 73iT^{2} \) |
| 79 | \( 1 - 15.1T + 79T^{2} \) |
| 83 | \( 1 + (0.0917 - 0.0917i)T - 83iT^{2} \) |
| 89 | \( 1 + (3.46 - 12.9i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-6.54 + 1.75i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74513974377557577202365414135, −9.211901354898195561891726977011, −8.801829370349335409038165268251, −7.957995140916279522610249835408, −6.94408874627828536093554645886, −6.09980833043255330775814760084, −5.27472600223900550694240464912, −3.92596618385649394068416768098, −3.11672193062360462970470291728, −1.87913193452879943882823421960,
0.45266864731144251107474444228, 1.81881203101676438935566950469, 3.73016761455899966548572656429, 4.26599766876958418708150808893, 5.07199824754716557258195332081, 6.48433571168777844625766789744, 7.31532087928066485096598002110, 8.101468165449177755155623632927, 8.654957957769500940042322858396, 9.912179183693108680135248115401