L(s) = 1 | − 2·2-s + 2·4-s − 12·7-s − 4·8-s + 24·14-s + 8·16-s − 8·17-s − 16·23-s − 4·25-s − 24·28-s − 20·31-s − 8·32-s + 16·34-s − 8·41-s + 32·46-s − 20·47-s + 68·49-s + 8·50-s + 48·56-s + 40·62-s + 8·64-s − 16·68-s + 12·71-s − 16·73-s + 8·79-s + 16·82-s − 32·92-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s − 4.53·7-s − 1.41·8-s + 6.41·14-s + 2·16-s − 1.94·17-s − 3.33·23-s − 4/5·25-s − 4.53·28-s − 3.59·31-s − 1.41·32-s + 2.74·34-s − 1.24·41-s + 4.71·46-s − 2.91·47-s + 68/7·49-s + 1.13·50-s + 6.41·56-s + 5.08·62-s + 64-s − 1.94·68-s + 1.42·71-s − 1.87·73-s + 0.900·79-s + 1.76·82-s − 3.33·92-s + ⋯ |
Λ(s)=(=((212⋅38⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((212⋅38⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
212⋅38⋅134
|
Sign: |
1
|
Analytic conductor: |
3120.41 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 212⋅38⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C22 | 1+pT+pT2+p2T3+p2T4 |
| 3 | | 1 |
| 13 | C2 | (1+T2)2 |
good | 5 | C22 | (1+2T2+p2T4)2 |
| 7 | D4 | (1+6T+20T2+6pT3+p2T4)2 |
| 11 | D4×C2 | 1−20T2+234T4−20p2T6+p4T8 |
| 17 | D4 | (1+4T+26T2+4pT3+p2T4)2 |
| 19 | D4×C2 | 1−68T2+1866T4−68p2T6+p4T8 |
| 23 | C2 | (1+4T+pT2)4 |
| 29 | C22 | (1−54T2+p2T4)2 |
| 31 | D4 | (1+10T+84T2+10pT3+p2T4)2 |
| 37 | D4×C2 | 1−44T2+2454T4−44p2T6+p4T8 |
| 41 | D4 | (1+4T+38T2+4pT3+p2T4)2 |
| 43 | D4×C2 | 1−116T2+6294T4−116p2T6+p4T8 |
| 47 | D4 | (1+10T+116T2+10pT3+p2T4)2 |
| 53 | D4×C2 | 1−84T2+4310T4−84p2T6+p4T8 |
| 59 | D4×C2 | 1−132T2+8618T4−132p2T6+p4T8 |
| 61 | D4×C2 | 1−116T2+7734T4−116p2T6+p4T8 |
| 67 | D4×C2 | 1−260T2+25866T4−260p2T6+p4T8 |
| 71 | D4 | (1−6T+124T2−6pT3+p2T4)2 |
| 73 | D4 | (1+8T+150T2+8pT3+p2T4)2 |
| 79 | D4 | (1−4T+150T2−4pT3+p2T4)2 |
| 83 | D4×C2 | 1−276T2+32522T4−276p2T6+p4T8 |
| 89 | C22 | (1−122T2+p2T4)2 |
| 97 | D4 | (1+8T+102T2+8pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.020941794939133584860518192864, −7.18706617342979307753758092314, −7.12450220630040367648499691281, −6.99854600532153647017091440480, −6.72006370074289614483089716787, −6.63784586481738135130986254858, −6.30362524727238835065348539218, −6.21000194626873928727063218920, −5.97233738629684496505553764677, −5.89668617770242784064811445644, −5.61637003307684074460220913949, −5.28293202589334371685282680310, −5.01435696178616976656579535507, −4.55837487039604919016566799370, −4.07346674060573431614367093117, −3.88022216881596183244909708408, −3.79463603611424123603995423590, −3.55815558896606981189675044694, −3.19448093856665652571622750036, −3.09355066450153156380876986634, −2.85657727637471904963457577851, −2.23791321779624822399883873520, −2.06517492412871521886346786147, −1.93801626642843690496073000937, −1.24190027439206878245471091921, 0, 0, 0, 0,
1.24190027439206878245471091921, 1.93801626642843690496073000937, 2.06517492412871521886346786147, 2.23791321779624822399883873520, 2.85657727637471904963457577851, 3.09355066450153156380876986634, 3.19448093856665652571622750036, 3.55815558896606981189675044694, 3.79463603611424123603995423590, 3.88022216881596183244909708408, 4.07346674060573431614367093117, 4.55837487039604919016566799370, 5.01435696178616976656579535507, 5.28293202589334371685282680310, 5.61637003307684074460220913949, 5.89668617770242784064811445644, 5.97233738629684496505553764677, 6.21000194626873928727063218920, 6.30362524727238835065348539218, 6.63784586481738135130986254858, 6.72006370074289614483089716787, 6.99854600532153647017091440480, 7.12450220630040367648499691281, 7.18706617342979307753758092314, 8.020941794939133584860518192864