Properties

Label 8-936e4-1.1-c1e4-0-19
Degree $8$
Conductor $767544201216$
Sign $1$
Analytic cond. $3120.41$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 12·7-s − 4·8-s + 24·14-s + 8·16-s − 8·17-s − 16·23-s − 4·25-s − 24·28-s − 20·31-s − 8·32-s + 16·34-s − 8·41-s + 32·46-s − 20·47-s + 68·49-s + 8·50-s + 48·56-s + 40·62-s + 8·64-s − 16·68-s + 12·71-s − 16·73-s + 8·79-s + 16·82-s − 32·92-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s − 4.53·7-s − 1.41·8-s + 6.41·14-s + 2·16-s − 1.94·17-s − 3.33·23-s − 4/5·25-s − 4.53·28-s − 3.59·31-s − 1.41·32-s + 2.74·34-s − 1.24·41-s + 4.71·46-s − 2.91·47-s + 68/7·49-s + 1.13·50-s + 6.41·56-s + 5.08·62-s + 64-s − 1.94·68-s + 1.42·71-s − 1.87·73-s + 0.900·79-s + 1.76·82-s − 3.33·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(3120.41\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{12} \cdot 3^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
3 \( 1 \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
7$D_{4}$ \( ( 1 + 6 T + 20 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 20 T^{2} + 234 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 + 4 T + 26 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 68 T^{2} + 1866 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
29$C_2^2$ \( ( 1 - 54 T^{2} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 10 T + 84 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 44 T^{2} + 2454 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + 4 T + 38 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 116 T^{2} + 6294 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 + 10 T + 116 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 84 T^{2} + 4310 T^{4} - 84 p^{2} T^{6} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 - 132 T^{2} + 8618 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 116 T^{2} + 7734 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 260 T^{2} + 25866 T^{4} - 260 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 6 T + 124 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 + 8 T + 150 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 - 4 T + 150 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 276 T^{2} + 32522 T^{4} - 276 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 8 T + 102 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.020941794939133584860518192864, −7.18706617342979307753758092314, −7.12450220630040367648499691281, −6.99854600532153647017091440480, −6.72006370074289614483089716787, −6.63784586481738135130986254858, −6.30362524727238835065348539218, −6.21000194626873928727063218920, −5.97233738629684496505553764677, −5.89668617770242784064811445644, −5.61637003307684074460220913949, −5.28293202589334371685282680310, −5.01435696178616976656579535507, −4.55837487039604919016566799370, −4.07346674060573431614367093117, −3.88022216881596183244909708408, −3.79463603611424123603995423590, −3.55815558896606981189675044694, −3.19448093856665652571622750036, −3.09355066450153156380876986634, −2.85657727637471904963457577851, −2.23791321779624822399883873520, −2.06517492412871521886346786147, −1.93801626642843690496073000937, −1.24190027439206878245471091921, 0, 0, 0, 0, 1.24190027439206878245471091921, 1.93801626642843690496073000937, 2.06517492412871521886346786147, 2.23791321779624822399883873520, 2.85657727637471904963457577851, 3.09355066450153156380876986634, 3.19448093856665652571622750036, 3.55815558896606981189675044694, 3.79463603611424123603995423590, 3.88022216881596183244909708408, 4.07346674060573431614367093117, 4.55837487039604919016566799370, 5.01435696178616976656579535507, 5.28293202589334371685282680310, 5.61637003307684074460220913949, 5.89668617770242784064811445644, 5.97233738629684496505553764677, 6.21000194626873928727063218920, 6.30362524727238835065348539218, 6.63784586481738135130986254858, 6.72006370074289614483089716787, 6.99854600532153647017091440480, 7.12450220630040367648499691281, 7.18706617342979307753758092314, 8.020941794939133584860518192864

Graph of the $Z$-function along the critical line