L(s) = 1 | + (1.40 + 0.137i)2-s + (1.96 + 0.386i)4-s + 4.18i·5-s + 2.70·7-s + (2.70 + 0.814i)8-s + (−0.575 + 5.89i)10-s + 0.956i·11-s − i·13-s + (3.81 + 0.372i)14-s + (3.70 + 1.51i)16-s − 4.96·17-s − 5.59i·19-s + (−1.61 + 8.21i)20-s + (−0.131 + 1.34i)22-s − 5.16·23-s + ⋯ |
L(s) = 1 | + (0.995 + 0.0971i)2-s + (0.981 + 0.193i)4-s + 1.87i·5-s + 1.02·7-s + (0.957 + 0.287i)8-s + (−0.181 + 1.86i)10-s + 0.288i·11-s − 0.277i·13-s + (1.01 + 0.0995i)14-s + (0.925 + 0.379i)16-s − 1.20·17-s − 1.28i·19-s + (−0.362 + 1.83i)20-s + (−0.0280 + 0.287i)22-s − 1.07·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.287 - 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.287 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.60594 + 1.93774i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.60594 + 1.93774i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.40 - 0.137i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 - 4.18iT - 5T^{2} \) |
| 7 | \( 1 - 2.70T + 7T^{2} \) |
| 11 | \( 1 - 0.956iT - 11T^{2} \) |
| 17 | \( 1 + 4.96T + 17T^{2} \) |
| 19 | \( 1 + 5.59iT - 19T^{2} \) |
| 23 | \( 1 + 5.16T + 23T^{2} \) |
| 29 | \( 1 + 4.46iT - 29T^{2} \) |
| 31 | \( 1 - 6.37T + 31T^{2} \) |
| 37 | \( 1 - 1.66iT - 37T^{2} \) |
| 41 | \( 1 - 8.64T + 41T^{2} \) |
| 43 | \( 1 - 7.67iT - 43T^{2} \) |
| 47 | \( 1 - 8.01T + 47T^{2} \) |
| 53 | \( 1 - 0.0797iT - 53T^{2} \) |
| 59 | \( 1 + 4.70iT - 59T^{2} \) |
| 61 | \( 1 + 8.10iT - 61T^{2} \) |
| 67 | \( 1 + 13.7iT - 67T^{2} \) |
| 71 | \( 1 + 1.15T + 71T^{2} \) |
| 73 | \( 1 - 1.66T + 73T^{2} \) |
| 79 | \( 1 - 4.30T + 79T^{2} \) |
| 83 | \( 1 - 14.0iT - 83T^{2} \) |
| 89 | \( 1 + 11.6T + 89T^{2} \) |
| 97 | \( 1 + 6.17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61357252079546777120392372386, −9.672566995577301326787913874112, −8.121169416983992387093560257303, −7.51704325340405789300701867401, −6.62723220805288959974922433717, −6.11498430116825041758617239316, −4.81142487688499007804000899193, −4.02488875027423657542696208318, −2.76280648317380913119239196641, −2.17024384776544917144359021576,
1.22900047329686835119429146226, 2.16845086415072018926118118129, 4.07060584463657153450938701487, 4.43498023885763358306155600251, 5.40656215479090694203168726377, 6.00624417171268262779197317473, 7.40201168804568835033846028453, 8.280598113993218544010484595855, 8.831189136584579001408103794154, 9.989675519606086317242759858569