L(s) = 1 | − 3.17·5-s + (1.08 + 1.88i)7-s + (1.45 − 2.52i)11-s + (−1.21 + 3.39i)13-s + (−3.04 − 5.27i)17-s + (−1.45 − 2.52i)19-s + (0.281 − 0.488i)23-s + 5.09·25-s + (1.32 − 2.30i)29-s − 7.09·31-s + (−3.45 − 5.99i)35-s + (3.76 − 6.52i)37-s + (−1.30 + 2.26i)41-s + (−5.00 − 8.67i)43-s − 3.43·47-s + ⋯ |
L(s) = 1 | − 1.42·5-s + (0.411 + 0.712i)7-s + (0.439 − 0.762i)11-s + (−0.337 + 0.941i)13-s + (−0.739 − 1.28i)17-s + (−0.334 − 0.579i)19-s + (0.0587 − 0.101i)23-s + 1.01·25-s + (0.246 − 0.427i)29-s − 1.27·31-s + (−0.584 − 1.01i)35-s + (0.619 − 1.07i)37-s + (−0.204 + 0.353i)41-s + (−0.763 − 1.32i)43-s − 0.501·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.575 + 0.818i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.575 + 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.228471 - 0.439953i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.228471 - 0.439953i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (1.21 - 3.39i)T \) |
good | 5 | \( 1 + 3.17T + 5T^{2} \) |
| 7 | \( 1 + (-1.08 - 1.88i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.45 + 2.52i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3.04 + 5.27i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.45 + 2.52i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.281 + 0.488i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.32 + 2.30i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 7.09T + 31T^{2} \) |
| 37 | \( 1 + (-3.76 + 6.52i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.30 - 2.26i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.00 + 8.67i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.43T + 47T^{2} \) |
| 53 | \( 1 + 7.17T + 53T^{2} \) |
| 59 | \( 1 + (7.27 + 12.5i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.39 + 7.61i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.52 - 9.56i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.71 - 6.44i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 13.1T + 73T^{2} \) |
| 79 | \( 1 - 9.96T + 79T^{2} \) |
| 83 | \( 1 + 13.7T + 83T^{2} \) |
| 89 | \( 1 + (2 - 3.46i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.629 + 1.09i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.488875644045103387490732202307, −8.891803169913963078626245647077, −8.161894569852843207640565549656, −7.24571930903093917921320494806, −6.52477706257969478525316259903, −5.20085646178555306171078709310, −4.39833149707529973828913761754, −3.44803597520639179846382263660, −2.19533440453654932568018702070, −0.23621612107437885500248268702,
1.52509614412317276971244467712, 3.25816119673642692956014146968, 4.15641709084642720352525109441, 4.75860797723116956804463794867, 6.18179989769101395374354511135, 7.18358582965972441486639306058, 7.85674745713607124943973021352, 8.390424871007786359746725847815, 9.546323828273021323855284000855, 10.62013713752113578352264560418