L(s) = 1 | − 3.17·5-s + (1.08 + 1.88i)7-s + (1.45 − 2.52i)11-s + (−1.21 + 3.39i)13-s + (−3.04 − 5.27i)17-s + (−1.45 − 2.52i)19-s + (0.281 − 0.488i)23-s + 5.09·25-s + (1.32 − 2.30i)29-s − 7.09·31-s + (−3.45 − 5.99i)35-s + (3.76 − 6.52i)37-s + (−1.30 + 2.26i)41-s + (−5.00 − 8.67i)43-s − 3.43·47-s + ⋯ |
L(s) = 1 | − 1.42·5-s + (0.411 + 0.712i)7-s + (0.439 − 0.762i)11-s + (−0.337 + 0.941i)13-s + (−0.739 − 1.28i)17-s + (−0.334 − 0.579i)19-s + (0.0587 − 0.101i)23-s + 1.01·25-s + (0.246 − 0.427i)29-s − 1.27·31-s + (−0.584 − 1.01i)35-s + (0.619 − 1.07i)37-s + (−0.204 + 0.353i)41-s + (−0.763 − 1.32i)43-s − 0.501·47-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(−0.575+0.818i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(−0.575+0.818i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
−0.575+0.818i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(217,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), −0.575+0.818i)
|
Particular Values
L(1) |
≈ |
0.228471−0.439953i |
L(21) |
≈ |
0.228471−0.439953i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(1.21−3.39i)T |
good | 5 | 1+3.17T+5T2 |
| 7 | 1+(−1.08−1.88i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1.45+2.52i)T+(−5.5−9.52i)T2 |
| 17 | 1+(3.04+5.27i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.45+2.52i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.281+0.488i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.32+2.30i)T+(−14.5−25.1i)T2 |
| 31 | 1+7.09T+31T2 |
| 37 | 1+(−3.76+6.52i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.30−2.26i)T+(−20.5−35.5i)T2 |
| 43 | 1+(5.00+8.67i)T+(−21.5+37.2i)T2 |
| 47 | 1+3.43T+47T2 |
| 53 | 1+7.17T+53T2 |
| 59 | 1+(7.27+12.5i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.39+7.61i)T+(−30.5+52.8i)T2 |
| 67 | 1+(5.52−9.56i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−3.71−6.44i)T+(−35.5+61.4i)T2 |
| 73 | 1−13.1T+73T2 |
| 79 | 1−9.96T+79T2 |
| 83 | 1+13.7T+83T2 |
| 89 | 1+(2−3.46i)T+(−44.5−77.0i)T2 |
| 97 | 1+(0.629+1.09i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.488875644045103387490732202307, −8.891803169913963078626245647077, −8.161894569852843207640565549656, −7.24571930903093917921320494806, −6.52477706257969478525316259903, −5.20085646178555306171078709310, −4.39833149707529973828913761754, −3.44803597520639179846382263660, −2.19533440453654932568018702070, −0.23621612107437885500248268702,
1.52509614412317276971244467712, 3.25816119673642692956014146968, 4.15641709084642720352525109441, 4.75860797723116956804463794867, 6.18179989769101395374354511135, 7.18358582965972441486639306058, 7.85674745713607124943973021352, 8.390424871007786359746725847815, 9.546323828273021323855284000855, 10.62013713752113578352264560418