Properties

Label 2-936-1.1-c3-0-43
Degree $2$
Conductor $936$
Sign $-1$
Analytic cond. $55.2257$
Root an. cond. $7.43140$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20.1·5-s − 19.6·7-s − 13.5·11-s + 13·13-s − 116.·17-s + 68.1·19-s − 122.·23-s + 280.·25-s − 204.·29-s − 194.·31-s − 396.·35-s − 142.·37-s + 175.·41-s − 219.·43-s − 236.·47-s + 45.0·49-s + 628.·53-s − 273.·55-s − 446.·59-s + 224.·61-s + 261.·65-s + 165.·67-s − 902.·71-s − 15.1·73-s + 266.·77-s + 670.·79-s − 1.04e3·83-s + ⋯
L(s)  = 1  + 1.80·5-s − 1.06·7-s − 0.371·11-s + 0.277·13-s − 1.66·17-s + 0.822·19-s − 1.10·23-s + 2.24·25-s − 1.30·29-s − 1.12·31-s − 1.91·35-s − 0.634·37-s + 0.666·41-s − 0.778·43-s − 0.733·47-s + 0.131·49-s + 1.62·53-s − 0.669·55-s − 0.984·59-s + 0.471·61-s + 0.499·65-s + 0.301·67-s − 1.50·71-s − 0.0242·73-s + 0.395·77-s + 0.954·79-s − 1.37·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(55.2257\)
Root analytic conductor: \(7.43140\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 936,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - 13T \)
good5 \( 1 - 20.1T + 125T^{2} \)
7 \( 1 + 19.6T + 343T^{2} \)
11 \( 1 + 13.5T + 1.33e3T^{2} \)
17 \( 1 + 116.T + 4.91e3T^{2} \)
19 \( 1 - 68.1T + 6.85e3T^{2} \)
23 \( 1 + 122.T + 1.21e4T^{2} \)
29 \( 1 + 204.T + 2.43e4T^{2} \)
31 \( 1 + 194.T + 2.97e4T^{2} \)
37 \( 1 + 142.T + 5.06e4T^{2} \)
41 \( 1 - 175.T + 6.89e4T^{2} \)
43 \( 1 + 219.T + 7.95e4T^{2} \)
47 \( 1 + 236.T + 1.03e5T^{2} \)
53 \( 1 - 628.T + 1.48e5T^{2} \)
59 \( 1 + 446.T + 2.05e5T^{2} \)
61 \( 1 - 224.T + 2.26e5T^{2} \)
67 \( 1 - 165.T + 3.00e5T^{2} \)
71 \( 1 + 902.T + 3.57e5T^{2} \)
73 \( 1 + 15.1T + 3.89e5T^{2} \)
79 \( 1 - 670.T + 4.93e5T^{2} \)
83 \( 1 + 1.04e3T + 5.71e5T^{2} \)
89 \( 1 - 562.T + 7.04e5T^{2} \)
97 \( 1 - 1.64e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.313697741147569833599787464643, −8.802153892183478627216240694595, −7.36496967176727862697140553955, −6.47262603488598593427984534944, −5.90017349651120567588394762456, −5.08947829165157097134894707327, −3.68816191187212814107230267228, −2.52149181551319299316355856959, −1.70986572916487379300631857110, 0, 1.70986572916487379300631857110, 2.52149181551319299316355856959, 3.68816191187212814107230267228, 5.08947829165157097134894707327, 5.90017349651120567588394762456, 6.47262603488598593427984534944, 7.36496967176727862697140553955, 8.802153892183478627216240694595, 9.313697741147569833599787464643

Graph of the $Z$-function along the critical line