Properties

Label 2-9405-1.1-c1-0-35
Degree $2$
Conductor $9405$
Sign $1$
Analytic cond. $75.0993$
Root an. cond. $8.66598$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.21·2-s − 0.529·4-s + 5-s − 3.37·7-s + 3.06·8-s − 1.21·10-s + 11-s − 0.439·13-s + 4.08·14-s − 2.65·16-s + 3.08·17-s − 19-s − 0.529·20-s − 1.21·22-s − 1.45·23-s + 25-s + 0.533·26-s + 1.78·28-s − 5.85·29-s − 6.80·31-s − 2.91·32-s − 3.74·34-s − 3.37·35-s − 2.73·37-s + 1.21·38-s + 3.06·40-s + 3.67·41-s + ⋯
L(s)  = 1  − 0.857·2-s − 0.264·4-s + 0.447·5-s − 1.27·7-s + 1.08·8-s − 0.383·10-s + 0.301·11-s − 0.121·13-s + 1.09·14-s − 0.664·16-s + 0.749·17-s − 0.229·19-s − 0.118·20-s − 0.258·22-s − 0.303·23-s + 0.200·25-s + 0.104·26-s + 0.337·28-s − 1.08·29-s − 1.22·31-s − 0.514·32-s − 0.642·34-s − 0.569·35-s − 0.449·37-s + 0.196·38-s + 0.485·40-s + 0.574·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9405\)    =    \(3^{2} \cdot 5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(75.0993\)
Root analytic conductor: \(8.66598\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9405,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7150552497\)
\(L(\frac12)\) \(\approx\) \(0.7150552497\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
19 \( 1 + T \)
good2 \( 1 + 1.21T + 2T^{2} \)
7 \( 1 + 3.37T + 7T^{2} \)
13 \( 1 + 0.439T + 13T^{2} \)
17 \( 1 - 3.08T + 17T^{2} \)
23 \( 1 + 1.45T + 23T^{2} \)
29 \( 1 + 5.85T + 29T^{2} \)
31 \( 1 + 6.80T + 31T^{2} \)
37 \( 1 + 2.73T + 37T^{2} \)
41 \( 1 - 3.67T + 41T^{2} \)
43 \( 1 - 4.59T + 43T^{2} \)
47 \( 1 + 0.210T + 47T^{2} \)
53 \( 1 + 5.17T + 53T^{2} \)
59 \( 1 - 10.8T + 59T^{2} \)
61 \( 1 + 5.66T + 61T^{2} \)
67 \( 1 - 6.14T + 67T^{2} \)
71 \( 1 - 7.15T + 71T^{2} \)
73 \( 1 - 4.15T + 73T^{2} \)
79 \( 1 - 15.4T + 79T^{2} \)
83 \( 1 + 3.35T + 83T^{2} \)
89 \( 1 - 6.26T + 89T^{2} \)
97 \( 1 + 6.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75792493057507503658186945928, −7.11888364710085971344184992146, −6.47439857822569900169453640706, −5.69003542582746688160579092019, −5.10818434330440949585560706941, −3.98014218486112232620661044526, −3.54531501006253685920484117386, −2.44695661425238986924816461826, −1.54059190570268608819639552089, −0.47597432122503344972523003547, 0.47597432122503344972523003547, 1.54059190570268608819639552089, 2.44695661425238986924816461826, 3.54531501006253685920484117386, 3.98014218486112232620661044526, 5.10818434330440949585560706941, 5.69003542582746688160579092019, 6.47439857822569900169453640706, 7.11888364710085971344184992146, 7.75792493057507503658186945928

Graph of the $Z$-function along the critical line