Properties

Label 2-9408-1.1-c1-0-100
Degree $2$
Conductor $9408$
Sign $-1$
Analytic cond. $75.1232$
Root an. cond. $8.66736$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·5-s + 9-s + 2·11-s − 2·13-s − 4·15-s − 4·19-s − 6·23-s + 11·25-s + 27-s + 10·29-s + 8·31-s + 2·33-s − 10·37-s − 2·39-s + 4·41-s + 8·43-s − 4·45-s + 4·47-s − 10·53-s − 8·55-s − 4·57-s + 8·59-s − 6·61-s + 8·65-s − 4·67-s − 6·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.78·5-s + 1/3·9-s + 0.603·11-s − 0.554·13-s − 1.03·15-s − 0.917·19-s − 1.25·23-s + 11/5·25-s + 0.192·27-s + 1.85·29-s + 1.43·31-s + 0.348·33-s − 1.64·37-s − 0.320·39-s + 0.624·41-s + 1.21·43-s − 0.596·45-s + 0.583·47-s − 1.37·53-s − 1.07·55-s − 0.529·57-s + 1.04·59-s − 0.768·61-s + 0.992·65-s − 0.488·67-s − 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9408\)    =    \(2^{6} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(75.1232\)
Root analytic conductor: \(8.66736\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9408,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 14 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.53508753097183367475300539294, −6.77529870333421030186176053035, −6.27661290224716859471528916579, −5.00111738233824971840928924871, −4.28181139290826463205177365237, −3.99894229032159169016216676585, −3.09815051928293838870815972504, −2.38684018254695094005781982833, −1.10282062701679249502014322799, 0, 1.10282062701679249502014322799, 2.38684018254695094005781982833, 3.09815051928293838870815972504, 3.99894229032159169016216676585, 4.28181139290826463205177365237, 5.00111738233824971840928924871, 6.27661290224716859471528916579, 6.77529870333421030186176053035, 7.53508753097183367475300539294

Graph of the $Z$-function along the critical line