L(s) = 1 | + 3-s − 4·5-s + 9-s + 2·11-s − 2·13-s − 4·15-s − 4·19-s − 6·23-s + 11·25-s + 27-s + 10·29-s + 8·31-s + 2·33-s − 10·37-s − 2·39-s + 4·41-s + 8·43-s − 4·45-s + 4·47-s − 10·53-s − 8·55-s − 4·57-s + 8·59-s − 6·61-s + 8·65-s − 4·67-s − 6·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.78·5-s + 1/3·9-s + 0.603·11-s − 0.554·13-s − 1.03·15-s − 0.917·19-s − 1.25·23-s + 11/5·25-s + 0.192·27-s + 1.85·29-s + 1.43·31-s + 0.348·33-s − 1.64·37-s − 0.320·39-s + 0.624·41-s + 1.21·43-s − 0.596·45-s + 0.583·47-s − 1.37·53-s − 1.07·55-s − 0.529·57-s + 1.04·59-s − 0.768·61-s + 0.992·65-s − 0.488·67-s − 0.722·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 - 10 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 - 4 T + p T^{2} \) |
| 43 | \( 1 - 8 T + p T^{2} \) |
| 47 | \( 1 - 4 T + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 - 8 T + p T^{2} \) |
| 61 | \( 1 + 6 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 - 14 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 + 4 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.53508753097183367475300539294, −6.77529870333421030186176053035, −6.27661290224716859471528916579, −5.00111738233824971840928924871, −4.28181139290826463205177365237, −3.99894229032159169016216676585, −3.09815051928293838870815972504, −2.38684018254695094005781982833, −1.10282062701679249502014322799, 0,
1.10282062701679249502014322799, 2.38684018254695094005781982833, 3.09815051928293838870815972504, 3.99894229032159169016216676585, 4.28181139290826463205177365237, 5.00111738233824971840928924871, 6.27661290224716859471528916579, 6.77529870333421030186176053035, 7.53508753097183367475300539294