L(s) = 1 | + 3-s + 5-s + 9-s + 3·11-s − 4·13-s + 15-s − 4·19-s − 8·23-s − 4·25-s + 27-s + 3·29-s + 5·31-s + 3·33-s − 8·37-s − 4·39-s + 8·41-s + 6·43-s + 45-s − 10·47-s − 9·53-s + 3·55-s − 4·57-s − 5·59-s + 10·61-s − 4·65-s + 6·67-s − 8·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s + 1/3·9-s + 0.904·11-s − 1.10·13-s + 0.258·15-s − 0.917·19-s − 1.66·23-s − 4/5·25-s + 0.192·27-s + 0.557·29-s + 0.898·31-s + 0.522·33-s − 1.31·37-s − 0.640·39-s + 1.24·41-s + 0.914·43-s + 0.149·45-s − 1.45·47-s − 1.23·53-s + 0.404·55-s − 0.529·57-s − 0.650·59-s + 1.28·61-s − 0.496·65-s + 0.733·67-s − 0.963·69-s + ⋯ |
Λ(s)=(=(9408s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9408s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1 |
good | 5 | 1−T+pT2 |
| 11 | 1−3T+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1+8T+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1−8T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1+10T+pT2 |
| 53 | 1+9T+pT2 |
| 59 | 1+5T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−6T+pT2 |
| 71 | 1+10T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+11T+pT2 |
| 83 | 1−7T+pT2 |
| 89 | 1+18T+pT2 |
| 97 | 1+17T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.42726162911028705331278008951, −6.60305999567375257133497036704, −6.16627383952669880098720050859, −5.29756157702985957157895239329, −4.36148731296550932502233153823, −3.97688462267904261970972422654, −2.89872148536241795152805641294, −2.18483816931715435376045494244, −1.48235761878362885435682130382, 0,
1.48235761878362885435682130382, 2.18483816931715435376045494244, 2.89872148536241795152805641294, 3.97688462267904261970972422654, 4.36148731296550932502233153823, 5.29756157702985957157895239329, 6.16627383952669880098720050859, 6.60305999567375257133497036704, 7.42726162911028705331278008951