Properties

Label 2-9408-1.1-c1-0-150
Degree 22
Conductor 94089408
Sign 1-1
Analytic cond. 75.123275.1232
Root an. cond. 8.667368.66736
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 9-s + 3·11-s − 4·13-s + 15-s − 4·19-s − 8·23-s − 4·25-s + 27-s + 3·29-s + 5·31-s + 3·33-s − 8·37-s − 4·39-s + 8·41-s + 6·43-s + 45-s − 10·47-s − 9·53-s + 3·55-s − 4·57-s − 5·59-s + 10·61-s − 4·65-s + 6·67-s − 8·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1/3·9-s + 0.904·11-s − 1.10·13-s + 0.258·15-s − 0.917·19-s − 1.66·23-s − 4/5·25-s + 0.192·27-s + 0.557·29-s + 0.898·31-s + 0.522·33-s − 1.31·37-s − 0.640·39-s + 1.24·41-s + 0.914·43-s + 0.149·45-s − 1.45·47-s − 1.23·53-s + 0.404·55-s − 0.529·57-s − 0.650·59-s + 1.28·61-s − 0.496·65-s + 0.733·67-s − 0.963·69-s + ⋯

Functional equation

Λ(s)=(9408s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(9408s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 94089408    =    263722^{6} \cdot 3 \cdot 7^{2}
Sign: 1-1
Analytic conductor: 75.123275.1232
Root analytic conductor: 8.667368.66736
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 9408, ( :1/2), 1)(2,\ 9408,\ (\ :1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1T 1 - T
7 1 1
good5 1T+pT2 1 - T + p T^{2}
11 13T+pT2 1 - 3 T + p T^{2}
13 1+4T+pT2 1 + 4 T + p T^{2}
17 1+pT2 1 + p T^{2}
19 1+4T+pT2 1 + 4 T + p T^{2}
23 1+8T+pT2 1 + 8 T + p T^{2}
29 13T+pT2 1 - 3 T + p T^{2}
31 15T+pT2 1 - 5 T + p T^{2}
37 1+8T+pT2 1 + 8 T + p T^{2}
41 18T+pT2 1 - 8 T + p T^{2}
43 16T+pT2 1 - 6 T + p T^{2}
47 1+10T+pT2 1 + 10 T + p T^{2}
53 1+9T+pT2 1 + 9 T + p T^{2}
59 1+5T+pT2 1 + 5 T + p T^{2}
61 110T+pT2 1 - 10 T + p T^{2}
67 16T+pT2 1 - 6 T + p T^{2}
71 1+10T+pT2 1 + 10 T + p T^{2}
73 12T+pT2 1 - 2 T + p T^{2}
79 1+11T+pT2 1 + 11 T + p T^{2}
83 17T+pT2 1 - 7 T + p T^{2}
89 1+18T+pT2 1 + 18 T + p T^{2}
97 1+17T+pT2 1 + 17 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.42726162911028705331278008951, −6.60305999567375257133497036704, −6.16627383952669880098720050859, −5.29756157702985957157895239329, −4.36148731296550932502233153823, −3.97688462267904261970972422654, −2.89872148536241795152805641294, −2.18483816931715435376045494244, −1.48235761878362885435682130382, 0, 1.48235761878362885435682130382, 2.18483816931715435376045494244, 2.89872148536241795152805641294, 3.97688462267904261970972422654, 4.36148731296550932502233153823, 5.29756157702985957157895239329, 6.16627383952669880098720050859, 6.60305999567375257133497036704, 7.42726162911028705331278008951

Graph of the ZZ-function along the critical line