L(s) = 1 | + 3-s + 5-s + 9-s + 3·11-s − 4·13-s + 15-s − 4·19-s − 8·23-s − 4·25-s + 27-s + 3·29-s + 5·31-s + 3·33-s − 8·37-s − 4·39-s + 8·41-s + 6·43-s + 45-s − 10·47-s − 9·53-s + 3·55-s − 4·57-s − 5·59-s + 10·61-s − 4·65-s + 6·67-s − 8·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s + 1/3·9-s + 0.904·11-s − 1.10·13-s + 0.258·15-s − 0.917·19-s − 1.66·23-s − 4/5·25-s + 0.192·27-s + 0.557·29-s + 0.898·31-s + 0.522·33-s − 1.31·37-s − 0.640·39-s + 1.24·41-s + 0.914·43-s + 0.149·45-s − 1.45·47-s − 1.23·53-s + 0.404·55-s − 0.529·57-s − 0.650·59-s + 1.28·61-s − 0.496·65-s + 0.733·67-s − 0.963·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 - 3 T + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 - 3 T + p T^{2} \) |
| 31 | \( 1 - 5 T + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 - 8 T + p T^{2} \) |
| 43 | \( 1 - 6 T + p T^{2} \) |
| 47 | \( 1 + 10 T + p T^{2} \) |
| 53 | \( 1 + 9 T + p T^{2} \) |
| 59 | \( 1 + 5 T + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 - 6 T + p T^{2} \) |
| 71 | \( 1 + 10 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 + 11 T + p T^{2} \) |
| 83 | \( 1 - 7 T + p T^{2} \) |
| 89 | \( 1 + 18 T + p T^{2} \) |
| 97 | \( 1 + 17 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.42726162911028705331278008951, −6.60305999567375257133497036704, −6.16627383952669880098720050859, −5.29756157702985957157895239329, −4.36148731296550932502233153823, −3.97688462267904261970972422654, −2.89872148536241795152805641294, −2.18483816931715435376045494244, −1.48235761878362885435682130382, 0,
1.48235761878362885435682130382, 2.18483816931715435376045494244, 2.89872148536241795152805641294, 3.97688462267904261970972422654, 4.36148731296550932502233153823, 5.29756157702985957157895239329, 6.16627383952669880098720050859, 6.60305999567375257133497036704, 7.42726162911028705331278008951