Properties

Label 2-9464-1.1-c1-0-111
Degree $2$
Conductor $9464$
Sign $1$
Analytic cond. $75.5704$
Root an. cond. $8.69312$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.39·3-s + 1.17·5-s + 7-s − 1.05·9-s − 0.0631·11-s + 1.63·15-s + 5.07·17-s + 3.27·19-s + 1.39·21-s + 9.35·23-s − 3.62·25-s − 5.65·27-s + 3.49·29-s + 4.50·31-s − 0.0882·33-s + 1.17·35-s + 9.59·37-s − 8.38·41-s − 11.0·43-s − 1.23·45-s + 4.08·47-s + 49-s + 7.08·51-s + 1.39·53-s − 0.0741·55-s + 4.56·57-s − 4.76·59-s + ⋯
L(s)  = 1  + 0.806·3-s + 0.525·5-s + 0.377·7-s − 0.350·9-s − 0.0190·11-s + 0.423·15-s + 1.23·17-s + 0.750·19-s + 0.304·21-s + 1.94·23-s − 0.724·25-s − 1.08·27-s + 0.648·29-s + 0.809·31-s − 0.0153·33-s + 0.198·35-s + 1.57·37-s − 1.30·41-s − 1.68·43-s − 0.183·45-s + 0.596·47-s + 0.142·49-s + 0.992·51-s + 0.191·53-s − 0.0100·55-s + 0.605·57-s − 0.620·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9464\)    =    \(2^{3} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(75.5704\)
Root analytic conductor: \(8.69312\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.594754607\)
\(L(\frac12)\) \(\approx\) \(3.594754607\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - 1.39T + 3T^{2} \)
5 \( 1 - 1.17T + 5T^{2} \)
11 \( 1 + 0.0631T + 11T^{2} \)
17 \( 1 - 5.07T + 17T^{2} \)
19 \( 1 - 3.27T + 19T^{2} \)
23 \( 1 - 9.35T + 23T^{2} \)
29 \( 1 - 3.49T + 29T^{2} \)
31 \( 1 - 4.50T + 31T^{2} \)
37 \( 1 - 9.59T + 37T^{2} \)
41 \( 1 + 8.38T + 41T^{2} \)
43 \( 1 + 11.0T + 43T^{2} \)
47 \( 1 - 4.08T + 47T^{2} \)
53 \( 1 - 1.39T + 53T^{2} \)
59 \( 1 + 4.76T + 59T^{2} \)
61 \( 1 - 12.1T + 61T^{2} \)
67 \( 1 + 14.6T + 67T^{2} \)
71 \( 1 - 2.86T + 71T^{2} \)
73 \( 1 - 2.15T + 73T^{2} \)
79 \( 1 - 17.7T + 79T^{2} \)
83 \( 1 + 9.36T + 83T^{2} \)
89 \( 1 + 7.94T + 89T^{2} \)
97 \( 1 - 12.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.928927447556744590897026407824, −7.09362433127515628989778927462, −6.38066703557045212337283261979, −5.46330108033924086295735900607, −5.13534939954984906199754278717, −4.11310216043387769092360845645, −3.11696711670881720341494379618, −2.84947731016054190343373487585, −1.76696119525466527432033522043, −0.913342428546967808376663630924, 0.913342428546967808376663630924, 1.76696119525466527432033522043, 2.84947731016054190343373487585, 3.11696711670881720341494379618, 4.11310216043387769092360845645, 5.13534939954984906199754278717, 5.46330108033924086295735900607, 6.38066703557045212337283261979, 7.09362433127515628989778927462, 7.928927447556744590897026407824

Graph of the $Z$-function along the critical line