Properties

Label 2-9464-1.1-c1-0-208
Degree $2$
Conductor $9464$
Sign $-1$
Analytic cond. $75.5704$
Root an. cond. $8.69312$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.92·3-s + 1.09·5-s − 7-s + 0.714·9-s − 2.66·11-s + 2.10·15-s + 6.95·17-s − 5.13·19-s − 1.92·21-s − 1.06·23-s − 3.80·25-s − 4.40·27-s − 0.0985·29-s − 2.75·31-s − 5.14·33-s − 1.09·35-s + 4.39·37-s − 12.4·41-s + 8.19·43-s + 0.780·45-s + 7.46·47-s + 49-s + 13.4·51-s − 3.93·53-s − 2.91·55-s − 9.88·57-s + 0.410·59-s + ⋯
L(s)  = 1  + 1.11·3-s + 0.488·5-s − 0.377·7-s + 0.238·9-s − 0.804·11-s + 0.543·15-s + 1.68·17-s − 1.17·19-s − 0.420·21-s − 0.221·23-s − 0.761·25-s − 0.847·27-s − 0.0183·29-s − 0.495·31-s − 0.894·33-s − 0.184·35-s + 0.721·37-s − 1.94·41-s + 1.25·43-s + 0.116·45-s + 1.08·47-s + 0.142·49-s + 1.87·51-s − 0.541·53-s − 0.392·55-s − 1.30·57-s + 0.0534·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9464\)    =    \(2^{3} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(75.5704\)
Root analytic conductor: \(8.69312\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - 1.92T + 3T^{2} \)
5 \( 1 - 1.09T + 5T^{2} \)
11 \( 1 + 2.66T + 11T^{2} \)
17 \( 1 - 6.95T + 17T^{2} \)
19 \( 1 + 5.13T + 19T^{2} \)
23 \( 1 + 1.06T + 23T^{2} \)
29 \( 1 + 0.0985T + 29T^{2} \)
31 \( 1 + 2.75T + 31T^{2} \)
37 \( 1 - 4.39T + 37T^{2} \)
41 \( 1 + 12.4T + 41T^{2} \)
43 \( 1 - 8.19T + 43T^{2} \)
47 \( 1 - 7.46T + 47T^{2} \)
53 \( 1 + 3.93T + 53T^{2} \)
59 \( 1 - 0.410T + 59T^{2} \)
61 \( 1 + 14.9T + 61T^{2} \)
67 \( 1 - 0.197T + 67T^{2} \)
71 \( 1 + 3.61T + 71T^{2} \)
73 \( 1 + 9.10T + 73T^{2} \)
79 \( 1 - 15.4T + 79T^{2} \)
83 \( 1 - 2.39T + 83T^{2} \)
89 \( 1 + 14.4T + 89T^{2} \)
97 \( 1 + 7.53T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68866656584585720494003741972, −6.73992962568083074021774540802, −5.82377120620278824441914846180, −5.53290380735417008118428125414, −4.41387319240245662936714979514, −3.63611037262863855517998655145, −2.96282316168378805609578850407, −2.33482742779720963552248250430, −1.50148556014775792624063500342, 0, 1.50148556014775792624063500342, 2.33482742779720963552248250430, 2.96282316168378805609578850407, 3.63611037262863855517998655145, 4.41387319240245662936714979514, 5.53290380735417008118428125414, 5.82377120620278824441914846180, 6.73992962568083074021774540802, 7.68866656584585720494003741972

Graph of the $Z$-function along the critical line