L(s) = 1 | − 1.02e3·4-s + (1.97e3 + 2.42e3i)5-s + 8.48e3i·7-s − 5.90e4·9-s − 2.03e5·11-s + 1.04e6·16-s − 1.85e6i·17-s − 2.47e6·19-s + (−2.02e6 − 2.47e6i)20-s + 1.18e7i·23-s + (−1.96e6 + 9.56e6i)25-s − 8.69e6i·28-s + (−2.05e7 + 1.67e7i)35-s + 6.04e7·36-s − 2.03e8i·43-s + 2.08e8·44-s + ⋯ |
L(s) = 1 | − 4-s + (0.632 + 0.774i)5-s + 0.504i·7-s − 0.999·9-s − 1.26·11-s + 16-s − 1.30i·17-s − 19-s + (−0.632 − 0.774i)20-s + 1.83i·23-s + (−0.200 + 0.979i)25-s − 0.504i·28-s + (−0.391 + 0.319i)35-s + 0.999·36-s − 1.38i·43-s + 1.26·44-s + ⋯ |
Λ(s)=(=(95s/2ΓC(s)L(s)(0.632+0.774i)Λ(11−s)
Λ(s)=(=(95s/2ΓC(s+5)L(s)(0.632+0.774i)Λ(1−s)
Degree: |
2 |
Conductor: |
95
= 5⋅19
|
Sign: |
0.632+0.774i
|
Analytic conductor: |
60.3589 |
Root analytic conductor: |
7.76910 |
Motivic weight: |
10 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ95(94,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 95, ( :5), 0.632+0.774i)
|
Particular Values
L(211) |
≈ |
0.612044−0.290556i |
L(21) |
≈ |
0.612044−0.290556i |
L(6) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−1.97e3−2.42e3i)T |
| 19 | 1+2.47e6T |
good | 2 | 1+1.02e3T2 |
| 3 | 1+5.90e4T2 |
| 7 | 1−8.48e3iT−2.82e8T2 |
| 11 | 1+2.03e5T+2.59e10T2 |
| 13 | 1+1.37e11T2 |
| 17 | 1+1.85e6iT−2.01e12T2 |
| 23 | 1−1.18e7iT−4.14e13T2 |
| 29 | 1−4.20e14T2 |
| 31 | 1−8.19e14T2 |
| 37 | 1+4.80e15T2 |
| 41 | 1−1.34e16T2 |
| 43 | 1+2.03e8iT−2.16e16T2 |
| 47 | 1−4.28e7iT−5.25e16T2 |
| 53 | 1+1.74e17T2 |
| 59 | 1−5.11e17T2 |
| 61 | 1−1.60e9T+7.13e17T2 |
| 67 | 1+1.82e18T2 |
| 71 | 1−3.25e18T2 |
| 73 | 1+2.70e9iT−4.29e18T2 |
| 79 | 1−9.46e18T2 |
| 83 | 1+7.57e9iT−1.55e19T2 |
| 89 | 1−3.11e19T2 |
| 97 | 1+7.37e19T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.77719259641969960674549637429, −10.63396366213544073879169660943, −9.600166445566417064624825380321, −8.676299838494493369399258466472, −7.45176617241802238810016800197, −5.80047099553414431823568676264, −5.14378654070056368628474526800, −3.31919316396098611609328388716, −2.27361095777284880183677926131, −0.24820434471412867367521316336,
0.75020506806192037575935143114, 2.42135042513146881104795493235, 4.13208760491157723585707550606, 5.15730103531334606385314228817, 6.17217720397381422258065391455, 8.231373408226320965486263192293, 8.595756068064213234994245972359, 9.991202521767680121983389418604, 10.76794745697115588505466805548, 12.60068889380601118170171174584