L(s) = 1 | + 0.816·2-s + 1.53·3-s − 1.33·4-s − 5-s + 1.25·6-s + 5.03·7-s − 2.72·8-s − 0.633·9-s − 0.816·10-s − 3.03·11-s − 2.05·12-s − 4.57·13-s + 4.11·14-s − 1.53·15-s + 0.443·16-s − 1.07·17-s − 0.517·18-s + 19-s + 1.33·20-s + 7.74·21-s − 2.47·22-s + 4.11·23-s − 4.18·24-s + 25-s − 3.73·26-s − 5.58·27-s − 6.71·28-s + ⋯ |
L(s) = 1 | + 0.577·2-s + 0.888·3-s − 0.666·4-s − 0.447·5-s + 0.512·6-s + 1.90·7-s − 0.962·8-s − 0.211·9-s − 0.258·10-s − 0.914·11-s − 0.592·12-s − 1.26·13-s + 1.09·14-s − 0.397·15-s + 0.110·16-s − 0.261·17-s − 0.121·18-s + 0.229·19-s + 0.298·20-s + 1.68·21-s − 0.528·22-s + 0.857·23-s − 0.854·24-s + 0.200·25-s − 0.732·26-s − 1.07·27-s − 1.26·28-s + ⋯ |
Λ(s)=(=(95s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(95s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.375636158 |
L(21) |
≈ |
1.375636158 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+T |
| 19 | 1−T |
good | 2 | 1−0.816T+2T2 |
| 3 | 1−1.53T+3T2 |
| 7 | 1−5.03T+7T2 |
| 11 | 1+3.03T+11T2 |
| 13 | 1+4.57T+13T2 |
| 17 | 1+1.07T+17T2 |
| 23 | 1−4.11T+23T2 |
| 29 | 1+1.07T+29T2 |
| 31 | 1−5.58T+31T2 |
| 37 | 1−0.0947T+37T2 |
| 41 | 1−10.6T+41T2 |
| 43 | 1−5.03T+43T2 |
| 47 | 1+12.2T+47T2 |
| 53 | 1+4.09T+53T2 |
| 59 | 1+1.39T+59T2 |
| 61 | 1+5.69T+61T2 |
| 67 | 1−5.28T+67T2 |
| 71 | 1+5.67T+71T2 |
| 73 | 1−9.07T+73T2 |
| 79 | 1+5.39T+79T2 |
| 83 | 1−1.95T+83T2 |
| 89 | 1+2.18T+89T2 |
| 97 | 1+2.16T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.26130826641689113741472137633, −13.18340986649596871940767958234, −12.01852929511958864368013333007, −10.98458192117391506294016079182, −9.389715201950502876245592725518, −8.276465298966013527834539267026, −7.68669710050338327374469583993, −5.27426738456968623481319456299, −4.47077755270593959731533655099, −2.70606734603912392472615532973,
2.70606734603912392472615532973, 4.47077755270593959731533655099, 5.27426738456968623481319456299, 7.68669710050338327374469583993, 8.276465298966013527834539267026, 9.389715201950502876245592725518, 10.98458192117391506294016079182, 12.01852929511958864368013333007, 13.18340986649596871940767958234, 14.26130826641689113741472137633