Properties

Label 2-95-1.1-c1-0-3
Degree $2$
Conductor $95$
Sign $1$
Analytic cond. $0.758578$
Root an. cond. $0.870964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.816·2-s + 1.53·3-s − 1.33·4-s − 5-s + 1.25·6-s + 5.03·7-s − 2.72·8-s − 0.633·9-s − 0.816·10-s − 3.03·11-s − 2.05·12-s − 4.57·13-s + 4.11·14-s − 1.53·15-s + 0.443·16-s − 1.07·17-s − 0.517·18-s + 19-s + 1.33·20-s + 7.74·21-s − 2.47·22-s + 4.11·23-s − 4.18·24-s + 25-s − 3.73·26-s − 5.58·27-s − 6.71·28-s + ⋯
L(s)  = 1  + 0.577·2-s + 0.888·3-s − 0.666·4-s − 0.447·5-s + 0.512·6-s + 1.90·7-s − 0.962·8-s − 0.211·9-s − 0.258·10-s − 0.914·11-s − 0.592·12-s − 1.26·13-s + 1.09·14-s − 0.397·15-s + 0.110·16-s − 0.261·17-s − 0.121·18-s + 0.229·19-s + 0.298·20-s + 1.68·21-s − 0.528·22-s + 0.857·23-s − 0.854·24-s + 0.200·25-s − 0.732·26-s − 1.07·27-s − 1.26·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95\)    =    \(5 \cdot 19\)
Sign: $1$
Analytic conductor: \(0.758578\)
Root analytic conductor: \(0.870964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 95,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.375636158\)
\(L(\frac12)\) \(\approx\) \(1.375636158\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 - 0.816T + 2T^{2} \)
3 \( 1 - 1.53T + 3T^{2} \)
7 \( 1 - 5.03T + 7T^{2} \)
11 \( 1 + 3.03T + 11T^{2} \)
13 \( 1 + 4.57T + 13T^{2} \)
17 \( 1 + 1.07T + 17T^{2} \)
23 \( 1 - 4.11T + 23T^{2} \)
29 \( 1 + 1.07T + 29T^{2} \)
31 \( 1 - 5.58T + 31T^{2} \)
37 \( 1 - 0.0947T + 37T^{2} \)
41 \( 1 - 10.6T + 41T^{2} \)
43 \( 1 - 5.03T + 43T^{2} \)
47 \( 1 + 12.2T + 47T^{2} \)
53 \( 1 + 4.09T + 53T^{2} \)
59 \( 1 + 1.39T + 59T^{2} \)
61 \( 1 + 5.69T + 61T^{2} \)
67 \( 1 - 5.28T + 67T^{2} \)
71 \( 1 + 5.67T + 71T^{2} \)
73 \( 1 - 9.07T + 73T^{2} \)
79 \( 1 + 5.39T + 79T^{2} \)
83 \( 1 - 1.95T + 83T^{2} \)
89 \( 1 + 2.18T + 89T^{2} \)
97 \( 1 + 2.16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.26130826641689113741472137633, −13.18340986649596871940767958234, −12.01852929511958864368013333007, −10.98458192117391506294016079182, −9.389715201950502876245592725518, −8.276465298966013527834539267026, −7.68669710050338327374469583993, −5.27426738456968623481319456299, −4.47077755270593959731533655099, −2.70606734603912392472615532973, 2.70606734603912392472615532973, 4.47077755270593959731533655099, 5.27426738456968623481319456299, 7.68669710050338327374469583993, 8.276465298966013527834539267026, 9.389715201950502876245592725518, 10.98458192117391506294016079182, 12.01852929511958864368013333007, 13.18340986649596871940767958234, 14.26130826641689113741472137633

Graph of the $Z$-function along the critical line