L(s) = 1 | + 2·5-s − 6·9-s − 4·11-s + 4·16-s + 14·19-s + 5·25-s + 18·29-s − 28·31-s − 4·41-s − 12·45-s − 4·49-s − 8·55-s + 18·59-s + 14·61-s − 2·71-s + 2·79-s + 8·80-s + 9·81-s − 22·89-s + 28·95-s + 24·99-s − 30·101-s + 30·109-s − 34·121-s + 22·125-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 2·9-s − 1.20·11-s + 16-s + 3.21·19-s + 25-s + 3.34·29-s − 5.02·31-s − 0.624·41-s − 1.78·45-s − 4/7·49-s − 1.07·55-s + 2.34·59-s + 1.79·61-s − 0.237·71-s + 0.225·79-s + 0.894·80-s + 81-s − 2.33·89-s + 2.87·95-s + 2.41·99-s − 2.98·101-s + 2.87·109-s − 3.09·121-s + 1.96·125-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(81450625s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=(81450625s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
81450625
= 54⋅194
|
Sign: |
1
|
Analytic conductor: |
0.331133 |
Root analytic conductor: |
0.870964 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 81450625, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.9325833630 |
L(21) |
≈ |
0.9325833630 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | C22 | 1−2T−T2−2pT3+p2T4 |
| 19 | C2 | (1−7T+pT2)2 |
good | 2 | C22×C22 | (1−pT+pT2−p2T3+p2T4)(1+pT+pT2+p2T3+p2T4) |
| 3 | C22 | (1+pT2+p2T4)2 |
| 7 | C22 | (1+2T2+p2T4)2 |
| 11 | C2 | (1+T+pT2)4 |
| 13 | C22×C22 | (1−T2+p2T4)(1+23T2+p2T4) |
| 17 | C22×C22 | (1−8T+47T2−8pT3+p2T4)(1+8T+47T2+8pT3+p2T4) |
| 23 | C23 | 1+10T2−429T4+10p2T6+p4T8 |
| 29 | C22 | (1−9T+52T2−9pT3+p2T4)2 |
| 31 | C2 | (1+7T+pT2)4 |
| 37 | C2 | (1−12T+pT2)2(1+12T+pT2)2 |
| 41 | C22 | (1+2T−37T2+2pT3+p2T4)2 |
| 43 | C23 | 1+82T2+4875T4+82p2T6+p4T8 |
| 47 | C23 | 1+58T2+1155T4+58p2T6+p4T8 |
| 53 | C22×C22 | (1−14T+143T2−14pT3+p2T4)(1+14T+143T2+14pT3+p2T4) |
| 59 | C22 | (1−9T+22T2−9pT3+p2T4)2 |
| 61 | C22 | (1−7T−12T2−7pT3+p2T4)2 |
| 67 | C23 | 1+34T2−3333T4+34p2T6+p4T8 |
| 71 | C22 | (1+T−70T2+pT3+p2T4)2 |
| 73 | C22×C22 | (1−97T2+p2T4)(1+143T2+p2T4) |
| 79 | C22 | (1−T−78T2−pT3+p2T4)2 |
| 83 | C22 | (1−130T2+p2T4)2 |
| 89 | C22 | (1+11T+32T2+11pT3+p2T4)2 |
| 97 | C23 | 1+158T2+15555T4+158p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28406807025431810497662859055, −10.19169022711037439401446761241, −9.679195793232533285153980504497, −9.532039439246845229554027544587, −9.398209563299963851999341288282, −8.806519243418086288951730869509, −8.537086427225120139224986603788, −8.479769171669099165672302364040, −7.997997415445342114601443402482, −7.83893619798098288182257797829, −7.22009183458066532805278103219, −6.99686756585096186919380791256, −6.98308444319837001016377361472, −6.24988958210879402343157399272, −5.66588674590193468099192679184, −5.64913526436897972261373285785, −5.40320872327279133319137090296, −5.20363376167158838329305437717, −4.88992968633206983173756073625, −3.99573480617704466686026911245, −3.37630375747422206201856635784, −3.23549390921444222657453093382, −2.76886642020995138513698274223, −2.32251101184469232458412983922, −1.27418545886597354390154600307,
1.27418545886597354390154600307, 2.32251101184469232458412983922, 2.76886642020995138513698274223, 3.23549390921444222657453093382, 3.37630375747422206201856635784, 3.99573480617704466686026911245, 4.88992968633206983173756073625, 5.20363376167158838329305437717, 5.40320872327279133319137090296, 5.64913526436897972261373285785, 5.66588674590193468099192679184, 6.24988958210879402343157399272, 6.98308444319837001016377361472, 6.99686756585096186919380791256, 7.22009183458066532805278103219, 7.83893619798098288182257797829, 7.997997415445342114601443402482, 8.479769171669099165672302364040, 8.537086427225120139224986603788, 8.806519243418086288951730869509, 9.398209563299963851999341288282, 9.532039439246845229554027544587, 9.679195793232533285153980504497, 10.19169022711037439401446761241, 10.28406807025431810497662859055