Properties

Label 8-95e4-1.1-c1e4-0-2
Degree $8$
Conductor $81450625$
Sign $1$
Analytic cond. $0.331133$
Root an. cond. $0.870964$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 6·9-s − 4·11-s + 4·16-s + 14·19-s + 5·25-s + 18·29-s − 28·31-s − 4·41-s − 12·45-s − 4·49-s − 8·55-s + 18·59-s + 14·61-s − 2·71-s + 2·79-s + 8·80-s + 9·81-s − 22·89-s + 28·95-s + 24·99-s − 30·101-s + 30·109-s − 34·121-s + 22·125-s + 127-s + 131-s + ⋯
L(s)  = 1  + 0.894·5-s − 2·9-s − 1.20·11-s + 16-s + 3.21·19-s + 25-s + 3.34·29-s − 5.02·31-s − 0.624·41-s − 1.78·45-s − 4/7·49-s − 1.07·55-s + 2.34·59-s + 1.79·61-s − 0.237·71-s + 0.225·79-s + 0.894·80-s + 81-s − 2.33·89-s + 2.87·95-s + 2.41·99-s − 2.98·101-s + 2.87·109-s − 3.09·121-s + 1.96·125-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81450625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81450625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(81450625\)    =    \(5^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(0.331133\)
Root analytic conductor: \(0.870964\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 81450625,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9325833630\)
\(L(\frac12)\) \(\approx\) \(0.9325833630\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2^2$ \( 1 - 2 T - T^{2} - 2 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
good2$C_2^2$$\times$$C_2^2$ \( ( 1 - p T + p T^{2} - p^{2} T^{3} + p^{2} T^{4} )( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} ) \)
3$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
13$C_2^2$$\times$$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )( 1 + 23 T^{2} + p^{2} T^{4} ) \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
23$C_2^3$ \( 1 + 10 T^{2} - 429 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 9 T + 52 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 7 T + p T^{2} )^{4} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 + 2 T - 37 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^3$ \( 1 + 82 T^{2} + 4875 T^{4} + 82 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^3$ \( 1 + 58 T^{2} + 1155 T^{4} + 58 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$$\times$$C_2^2$ \( ( 1 - 14 T + 143 T^{2} - 14 p T^{3} + p^{2} T^{4} )( 1 + 14 T + 143 T^{2} + 14 p T^{3} + p^{2} T^{4} ) \)
59$C_2^2$ \( ( 1 - 9 T + 22 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 7 T - 12 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 34 T^{2} - 3333 T^{4} + 34 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 + T - 70 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 97 T^{2} + p^{2} T^{4} )( 1 + 143 T^{2} + p^{2} T^{4} ) \)
79$C_2^2$ \( ( 1 - T - 78 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 11 T + 32 T^{2} + 11 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^3$ \( 1 + 158 T^{2} + 15555 T^{4} + 158 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28406807025431810497662859055, −10.19169022711037439401446761241, −9.679195793232533285153980504497, −9.532039439246845229554027544587, −9.398209563299963851999341288282, −8.806519243418086288951730869509, −8.537086427225120139224986603788, −8.479769171669099165672302364040, −7.997997415445342114601443402482, −7.83893619798098288182257797829, −7.22009183458066532805278103219, −6.99686756585096186919380791256, −6.98308444319837001016377361472, −6.24988958210879402343157399272, −5.66588674590193468099192679184, −5.64913526436897972261373285785, −5.40320872327279133319137090296, −5.20363376167158838329305437717, −4.88992968633206983173756073625, −3.99573480617704466686026911245, −3.37630375747422206201856635784, −3.23549390921444222657453093382, −2.76886642020995138513698274223, −2.32251101184469232458412983922, −1.27418545886597354390154600307, 1.27418545886597354390154600307, 2.32251101184469232458412983922, 2.76886642020995138513698274223, 3.23549390921444222657453093382, 3.37630375747422206201856635784, 3.99573480617704466686026911245, 4.88992968633206983173756073625, 5.20363376167158838329305437717, 5.40320872327279133319137090296, 5.64913526436897972261373285785, 5.66588674590193468099192679184, 6.24988958210879402343157399272, 6.98308444319837001016377361472, 6.99686756585096186919380791256, 7.22009183458066532805278103219, 7.83893619798098288182257797829, 7.997997415445342114601443402482, 8.479769171669099165672302364040, 8.537086427225120139224986603788, 8.806519243418086288951730869509, 9.398209563299963851999341288282, 9.532039439246845229554027544587, 9.679195793232533285153980504497, 10.19169022711037439401446761241, 10.28406807025431810497662859055

Graph of the $Z$-function along the critical line