L(s) = 1 | + (2.40 + 4.15i)2-s + (1.64 + 2.84i)3-s + (−7.53 + 13.0i)4-s + (2.5 + 4.33i)5-s + (−7.89 + 13.6i)6-s − 11.3·7-s − 33.9·8-s + (8.10 − 14.0i)9-s + (−12.0 + 20.7i)10-s + 22.0·11-s − 49.5·12-s + (3.78 − 6.55i)13-s + (−27.2 − 47.1i)14-s + (−8.21 + 14.2i)15-s + (−21.2 − 36.8i)16-s + (40.9 + 70.9i)17-s + ⋯ |
L(s) = 1 | + (0.849 + 1.47i)2-s + (0.316 + 0.547i)3-s + (−0.942 + 1.63i)4-s + (0.223 + 0.387i)5-s + (−0.536 + 0.929i)6-s − 0.611·7-s − 1.50·8-s + (0.300 − 0.519i)9-s + (−0.379 + 0.657i)10-s + 0.604·11-s − 1.19·12-s + (0.0807 − 0.139i)13-s + (−0.519 − 0.899i)14-s + (−0.141 + 0.244i)15-s + (−0.332 − 0.576i)16-s + (0.584 + 1.01i)17-s + ⋯ |
Λ(s)=(=(95s/2ΓC(s)L(s)(−0.952−0.304i)Λ(4−s)
Λ(s)=(=(95s/2ΓC(s+3/2)L(s)(−0.952−0.304i)Λ(1−s)
Degree: |
2 |
Conductor: |
95
= 5⋅19
|
Sign: |
−0.952−0.304i
|
Analytic conductor: |
5.60518 |
Root analytic conductor: |
2.36752 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ95(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 95, ( :3/2), −0.952−0.304i)
|
Particular Values
L(2) |
≈ |
0.382876+2.45556i |
L(21) |
≈ |
0.382876+2.45556i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.5−4.33i)T |
| 19 | 1+(82.4+7.97i)T |
good | 2 | 1+(−2.40−4.15i)T+(−4+6.92i)T2 |
| 3 | 1+(−1.64−2.84i)T+(−13.5+23.3i)T2 |
| 7 | 1+11.3T+343T2 |
| 11 | 1−22.0T+1.33e3T2 |
| 13 | 1+(−3.78+6.55i)T+(−1.09e3−1.90e3i)T2 |
| 17 | 1+(−40.9−70.9i)T+(−2.45e3+4.25e3i)T2 |
| 23 | 1+(−76.7+132.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(−15.8+27.4i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+51.8T+2.97e4T2 |
| 37 | 1−66.6T+5.06e4T2 |
| 41 | 1+(−121.−209.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(−143.−248.i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(−159.+275.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(−108.+188.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(275.+477.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−91.2+158.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−417.+722.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+(149.+258.i)T+(−1.78e5+3.09e5i)T2 |
| 73 | 1+(304.+526.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(124.+214.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+1.19e3T+5.71e5T2 |
| 89 | 1+(−343.+594.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+(−396.−686.i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.59888546821704214364302711307, −13.13896952868594464549584231073, −12.46062496422427848222145396986, −10.58867007250602309944441057827, −9.343263574422274996911339137031, −8.218763021480389694373672339918, −6.73251918473809794329623912705, −6.13938273649481981279542674558, −4.48201084120380200608372206134, −3.42057592393688813222131978530,
1.28409319467531454437135292061, 2.69406481991469485120454004281, 4.16028475839509612241927240308, 5.54186853618494731996376588878, 7.23004388471215829265933050177, 9.007171966546100244798121371387, 9.988196039852682221366472159196, 11.12361898364166511336399513238, 12.21644711877008451065474090491, 12.94051427235809595285236487820