L(s) = 1 | + (−1.35 − 2.34i)2-s + (4.30 + 7.44i)3-s + (0.319 − 0.553i)4-s + (2.5 + 4.33i)5-s + (11.6 − 20.2i)6-s + 10.4·7-s − 23.4·8-s + (−23.4 + 40.6i)9-s + (6.78 − 11.7i)10-s + 54.4·11-s + 5.49·12-s + (−40.3 + 69.9i)13-s + (−14.2 − 24.6i)14-s + (−21.5 + 37.2i)15-s + (29.2 + 50.6i)16-s + (9.86 + 17.0i)17-s + ⋯ |
L(s) = 1 | + (−0.479 − 0.830i)2-s + (0.827 + 1.43i)3-s + (0.0399 − 0.0691i)4-s + (0.223 + 0.387i)5-s + (0.793 − 1.37i)6-s + 0.566·7-s − 1.03·8-s + (−0.870 + 1.50i)9-s + (0.214 − 0.371i)10-s + 1.49·11-s + 0.132·12-s + (−0.861 + 1.49i)13-s + (−0.271 − 0.470i)14-s + (−0.370 + 0.641i)15-s + (0.456 + 0.791i)16-s + (0.140 + 0.243i)17-s + ⋯ |
Λ(s)=(=(95s/2ΓC(s)L(s)(0.894−0.446i)Λ(4−s)
Λ(s)=(=(95s/2ΓC(s+3/2)L(s)(0.894−0.446i)Λ(1−s)
Degree: |
2 |
Conductor: |
95
= 5⋅19
|
Sign: |
0.894−0.446i
|
Analytic conductor: |
5.60518 |
Root analytic conductor: |
2.36752 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ95(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 95, ( :3/2), 0.894−0.446i)
|
Particular Values
L(2) |
≈ |
1.69302+0.399436i |
L(21) |
≈ |
1.69302+0.399436i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.5−4.33i)T |
| 19 | 1+(−64.5+51.8i)T |
good | 2 | 1+(1.35+2.34i)T+(−4+6.92i)T2 |
| 3 | 1+(−4.30−7.44i)T+(−13.5+23.3i)T2 |
| 7 | 1−10.4T+343T2 |
| 11 | 1−54.4T+1.33e3T2 |
| 13 | 1+(40.3−69.9i)T+(−1.09e3−1.90e3i)T2 |
| 17 | 1+(−9.86−17.0i)T+(−2.45e3+4.25e3i)T2 |
| 23 | 1+(−64.9+112.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(13.6−23.6i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1−9.90T+2.97e4T2 |
| 37 | 1+217.T+5.06e4T2 |
| 41 | 1+(258.+447.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(−128.−223.i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(−66.2+114.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(−199.+345.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(298.+516.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−183.+317.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(83.7−145.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+(331.+574.i)T+(−1.78e5+3.09e5i)T2 |
| 73 | 1+(66.6+115.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(−1.95−3.38i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−154.T+5.71e5T2 |
| 89 | 1+(−534.+924.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+(367.+637.i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.20657418628434972942945910264, −11.98435044102541288796648008897, −11.19276338294576093145995085038, −10.19785966348505928529637078197, −9.314615242581867204492201155002, −8.823685079011574403106544652876, −6.76970009392086692688620281803, −4.82755907158703259075951222818, −3.49718242765255502892025739421, −2.01674595870786965299758792455,
1.26095082385085948443012952105, 3.08742762738865644901371500052, 5.68127566439890424041718908071, 7.01670505813238605077203803778, 7.72620896402145571481257257037, 8.566126903806136066513746362588, 9.569621573426856193623630414043, 11.80389779720182208261989103368, 12.38384153370508708147514091265, 13.54128332115120139229657462633