L(s) = 1 | + (−1.35 − 2.34i)2-s + (4.30 + 7.44i)3-s + (0.319 − 0.553i)4-s + (2.5 + 4.33i)5-s + (11.6 − 20.2i)6-s + 10.4·7-s − 23.4·8-s + (−23.4 + 40.6i)9-s + (6.78 − 11.7i)10-s + 54.4·11-s + 5.49·12-s + (−40.3 + 69.9i)13-s + (−14.2 − 24.6i)14-s + (−21.5 + 37.2i)15-s + (29.2 + 50.6i)16-s + (9.86 + 17.0i)17-s + ⋯ |
L(s) = 1 | + (−0.479 − 0.830i)2-s + (0.827 + 1.43i)3-s + (0.0399 − 0.0691i)4-s + (0.223 + 0.387i)5-s + (0.793 − 1.37i)6-s + 0.566·7-s − 1.03·8-s + (−0.870 + 1.50i)9-s + (0.214 − 0.371i)10-s + 1.49·11-s + 0.132·12-s + (−0.861 + 1.49i)13-s + (−0.271 − 0.470i)14-s + (−0.370 + 0.641i)15-s + (0.456 + 0.791i)16-s + (0.140 + 0.243i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.446i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.446i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.69302 + 0.399436i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69302 + 0.399436i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.5 - 4.33i)T \) |
| 19 | \( 1 + (-64.5 + 51.8i)T \) |
good | 2 | \( 1 + (1.35 + 2.34i)T + (-4 + 6.92i)T^{2} \) |
| 3 | \( 1 + (-4.30 - 7.44i)T + (-13.5 + 23.3i)T^{2} \) |
| 7 | \( 1 - 10.4T + 343T^{2} \) |
| 11 | \( 1 - 54.4T + 1.33e3T^{2} \) |
| 13 | \( 1 + (40.3 - 69.9i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + (-9.86 - 17.0i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 23 | \( 1 + (-64.9 + 112. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (13.6 - 23.6i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 - 9.90T + 2.97e4T^{2} \) |
| 37 | \( 1 + 217.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (258. + 447. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-128. - 223. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-66.2 + 114. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-199. + 345. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (298. + 516. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-183. + 317. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (83.7 - 145. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + (331. + 574. i)T + (-1.78e5 + 3.09e5i)T^{2} \) |
| 73 | \( 1 + (66.6 + 115. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-1.95 - 3.38i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 154.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-534. + 924. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + (367. + 637. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.20657418628434972942945910264, −11.98435044102541288796648008897, −11.19276338294576093145995085038, −10.19785966348505928529637078197, −9.314615242581867204492201155002, −8.823685079011574403106544652876, −6.76970009392086692688620281803, −4.82755907158703259075951222818, −3.49718242765255502892025739421, −2.01674595870786965299758792455,
1.26095082385085948443012952105, 3.08742762738865644901371500052, 5.68127566439890424041718908071, 7.01670505813238605077203803778, 7.72620896402145571481257257037, 8.566126903806136066513746362588, 9.569621573426856193623630414043, 11.80389779720182208261989103368, 12.38384153370508708147514091265, 13.54128332115120139229657462633