Properties

Label 2-9522-1.1-c1-0-0
Degree $2$
Conductor $9522$
Sign $1$
Analytic cond. $76.0335$
Root an. cond. $8.71972$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 0.305·5-s − 3.02·7-s − 8-s + 0.305·10-s − 2.44·11-s − 2.87·13-s + 3.02·14-s + 16-s − 7.10·17-s − 2.23·19-s − 0.305·20-s + 2.44·22-s − 4.90·25-s + 2.87·26-s − 3.02·28-s + 3.30·29-s − 3.46·31-s − 32-s + 7.10·34-s + 0.924·35-s + 3.02·37-s + 2.23·38-s + 0.305·40-s − 4.05·41-s − 6.30·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.136·5-s − 1.14·7-s − 0.353·8-s + 0.0965·10-s − 0.738·11-s − 0.797·13-s + 0.809·14-s + 0.250·16-s − 1.72·17-s − 0.513·19-s − 0.0682·20-s + 0.522·22-s − 0.981·25-s + 0.563·26-s − 0.572·28-s + 0.613·29-s − 0.622·31-s − 0.176·32-s + 1.21·34-s + 0.156·35-s + 0.498·37-s + 0.362·38-s + 0.0482·40-s − 0.633·41-s − 0.961·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9522\)    =    \(2 \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(76.0335\)
Root analytic conductor: \(8.71972\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9522,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.09405609149\)
\(L(\frac12)\) \(\approx\) \(0.09405609149\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + 0.305T + 5T^{2} \)
7 \( 1 + 3.02T + 7T^{2} \)
11 \( 1 + 2.44T + 11T^{2} \)
13 \( 1 + 2.87T + 13T^{2} \)
17 \( 1 + 7.10T + 17T^{2} \)
19 \( 1 + 2.23T + 19T^{2} \)
29 \( 1 - 3.30T + 29T^{2} \)
31 \( 1 + 3.46T + 31T^{2} \)
37 \( 1 - 3.02T + 37T^{2} \)
41 \( 1 + 4.05T + 41T^{2} \)
43 \( 1 + 6.30T + 43T^{2} \)
47 \( 1 - 3.89T + 47T^{2} \)
53 \( 1 + 6.16T + 53T^{2} \)
59 \( 1 - 0.622T + 59T^{2} \)
61 \( 1 + 10.8T + 61T^{2} \)
67 \( 1 + 2.61T + 67T^{2} \)
71 \( 1 + 10.4T + 71T^{2} \)
73 \( 1 - 2.07T + 73T^{2} \)
79 \( 1 + 16.7T + 79T^{2} \)
83 \( 1 - 3.65T + 83T^{2} \)
89 \( 1 + 9.57T + 89T^{2} \)
97 \( 1 + 9.87T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61287018022069390773907223592, −7.12032564273242542797021702057, −6.41414032433393486517697411593, −5.92759527140195567462722832802, −4.89287967151509087625953157703, −4.20919286169587285932313348064, −3.19340281440398687267888031744, −2.55642933216099468438077311874, −1.77934002057206242163037134062, −0.15161895261114972287139250364, 0.15161895261114972287139250364, 1.77934002057206242163037134062, 2.55642933216099468438077311874, 3.19340281440398687267888031744, 4.20919286169587285932313348064, 4.89287967151509087625953157703, 5.92759527140195567462722832802, 6.41414032433393486517697411593, 7.12032564273242542797021702057, 7.61287018022069390773907223592

Graph of the $Z$-function along the critical line