L(s) = 1 | − 2·5-s − 2·7-s + 2·17-s + 2·19-s + 8·23-s − 2·25-s + 10·29-s + 4·31-s + 4·35-s − 4·41-s + 16·43-s − 2·47-s + 3·49-s − 2·53-s − 8·59-s − 16·61-s − 12·67-s + 6·71-s − 24·79-s + 2·83-s − 4·85-s + 4·89-s − 4·95-s + 16·97-s + 14·101-s − 2·107-s + 12·109-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 0.755·7-s + 0.485·17-s + 0.458·19-s + 1.66·23-s − 2/5·25-s + 1.85·29-s + 0.718·31-s + 0.676·35-s − 0.624·41-s + 2.43·43-s − 0.291·47-s + 3/7·49-s − 0.274·53-s − 1.04·59-s − 2.04·61-s − 1.46·67-s + 0.712·71-s − 2.70·79-s + 0.219·83-s − 0.433·85-s + 0.423·89-s − 0.410·95-s + 1.62·97-s + 1.39·101-s − 0.193·107-s + 1.14·109-s + ⋯ |
Λ(s)=(=(91699776s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(91699776s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
91699776
= 26⋅34⋅72⋅192
|
Sign: |
1
|
Analytic conductor: |
5846.85 |
Root analytic conductor: |
8.74441 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 91699776, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.601859547 |
L(21) |
≈ |
2.601859547 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 7 | C1 | (1+T)2 |
| 19 | C1 | (1−T)2 |
good | 5 | D4 | 1+2T+6T2+2pT3+p2T4 |
| 11 | C22 | 1+2T2+p2T4 |
| 13 | C22 | 1+6T2+p2T4 |
| 17 | D4 | 1−2T+30T2−2pT3+p2T4 |
| 23 | D4 | 1−8T+42T2−8pT3+p2T4 |
| 29 | D4 | 1−10T+78T2−10pT3+p2T4 |
| 31 | C4 | 1−4T+46T2−4pT3+p2T4 |
| 37 | C22 | 1+54T2+p2T4 |
| 41 | C2 | (1+2T+pT2)2 |
| 43 | C2 | (1−8T+pT2)2 |
| 47 | D4 | 1+2T+90T2+2pT3+p2T4 |
| 53 | D4 | 1+2T+102T2+2pT3+p2T4 |
| 59 | C2 | (1+4T+pT2)2 |
| 61 | C4 | 1+16T+166T2+16pT3+p2T4 |
| 67 | D4 | 1+12T+150T2+12pT3+p2T4 |
| 71 | D4 | 1−6T+146T2−6pT3+p2T4 |
| 73 | C22 | 1+126T2+p2T4 |
| 79 | C2 | (1+12T+pT2)2 |
| 83 | D4 | 1−2T+122T2−2pT3+p2T4 |
| 89 | D4 | 1−4T+102T2−4pT3+p2T4 |
| 97 | D4 | 1−16T+238T2−16pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.70951484034051205536681935895, −7.52823803322846159759648154169, −7.18889788851027380560146848903, −7.02017564502477463725896315624, −6.34575278849340594344900133085, −6.29853771056009229805266866160, −5.80057983565297474381585157848, −5.63452705621850259837392143914, −4.92740482504015199487720013440, −4.68493701240582109385200006039, −4.41593323584033033673555554056, −4.13135328882348988959716002594, −3.41787713104582311019878868858, −3.17511968326727805533838633187, −3.01659255582841408667145002889, −2.62744838700480254328747733856, −1.91145173289312730176780547763, −1.40009131734888899170382690652, −0.74511465595496916241196092036, −0.52943922930130364121168689504,
0.52943922930130364121168689504, 0.74511465595496916241196092036, 1.40009131734888899170382690652, 1.91145173289312730176780547763, 2.62744838700480254328747733856, 3.01659255582841408667145002889, 3.17511968326727805533838633187, 3.41787713104582311019878868858, 4.13135328882348988959716002594, 4.41593323584033033673555554056, 4.68493701240582109385200006039, 4.92740482504015199487720013440, 5.63452705621850259837392143914, 5.80057983565297474381585157848, 6.29853771056009229805266866160, 6.34575278849340594344900133085, 7.02017564502477463725896315624, 7.18889788851027380560146848903, 7.52823803322846159759648154169, 7.70951484034051205536681935895