L(s) = 1 | + i·3-s + (2 − i)5-s + 2i·7-s − 9-s − 6·11-s + 2i·13-s + (1 + 2i)15-s + 6i·17-s − 4·19-s − 2·21-s + 8i·23-s + (3 − 4i)25-s − i·27-s + 8·31-s − 6i·33-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (0.894 − 0.447i)5-s + 0.755i·7-s − 0.333·9-s − 1.80·11-s + 0.554i·13-s + (0.258 + 0.516i)15-s + 1.45i·17-s − 0.917·19-s − 0.436·21-s + 1.66i·23-s + (0.600 − 0.800i)25-s − 0.192i·27-s + 1.43·31-s − 1.04i·33-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(−0.447−0.894i)Λ(2−s)
Λ(s)=(=(960s/2ΓC(s+1/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
7.66563 |
Root analytic conductor: |
2.76868 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(769,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :1/2), −0.447−0.894i)
|
Particular Values
L(1) |
≈ |
0.675033+1.09222i |
L(21) |
≈ |
0.675033+1.09222i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1+(−2+i)T |
good | 7 | 1−2iT−7T2 |
| 11 | 1+6T+11T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1−6iT−17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1−8iT−23T2 |
| 29 | 1+29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1+4iT−47T2 |
| 53 | 1+6iT−53T2 |
| 59 | 1−6T+59T2 |
| 61 | 1−6T+61T2 |
| 67 | 1−67T2 |
| 71 | 1−4T+71T2 |
| 73 | 1−12iT−73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1−12iT−83T2 |
| 89 | 1+14T+89T2 |
| 97 | 1+8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.10843074733092975834423502054, −9.677742935051225656092075022861, −8.455995937978732418884194336711, −8.277596149553374920068614923576, −6.72118002178376890734929170176, −5.68519514885472871063497048270, −5.28413821514658668311735752097, −4.18954719814143513552709798199, −2.80070665029808225874580405786, −1.85377158794925610007949732812,
0.55855792703317023892837593089, 2.35021042146029618209966128923, 2.91049022848173918235475093563, 4.62606190514689230156777348903, 5.45498881352701941400877597056, 6.44912600717094385911057205493, 7.18008565536287803926850182462, 7.968926470881624564798648519485, 8.824488093944440135428863578877, 10.16301143950663709372774734815