Properties

Label 2-960-5.4-c1-0-3
Degree $2$
Conductor $960$
Sign $-0.447 - 0.894i$
Analytic cond. $7.66563$
Root an. cond. $2.76868$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + (2 − i)5-s + 2i·7-s − 9-s − 6·11-s + 2i·13-s + (1 + 2i)15-s + 6i·17-s − 4·19-s − 2·21-s + 8i·23-s + (3 − 4i)25-s i·27-s + 8·31-s − 6i·33-s + ⋯
L(s)  = 1  + 0.577i·3-s + (0.894 − 0.447i)5-s + 0.755i·7-s − 0.333·9-s − 1.80·11-s + 0.554i·13-s + (0.258 + 0.516i)15-s + 1.45i·17-s − 0.917·19-s − 0.436·21-s + 1.66i·23-s + (0.600 − 0.800i)25-s − 0.192i·27-s + 1.43·31-s − 1.04i·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(960\)    =    \(2^{6} \cdot 3 \cdot 5\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(7.66563\)
Root analytic conductor: \(2.76868\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{960} (769, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 960,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.675033 + 1.09222i\)
\(L(\frac12)\) \(\approx\) \(0.675033 + 1.09222i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 + (-2 + i)T \)
good7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 + 6T + 11T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 - 6iT - 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 - 8iT - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 4iT - 43T^{2} \)
47 \( 1 + 4iT - 47T^{2} \)
53 \( 1 + 6iT - 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 - 4T + 71T^{2} \)
73 \( 1 - 12iT - 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 + 14T + 89T^{2} \)
97 \( 1 + 8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10843074733092975834423502054, −9.677742935051225656092075022861, −8.455995937978732418884194336711, −8.277596149553374920068614923576, −6.72118002178376890734929170176, −5.68519514885472871063497048270, −5.28413821514658668311735752097, −4.18954719814143513552709798199, −2.80070665029808225874580405786, −1.85377158794925610007949732812, 0.55855792703317023892837593089, 2.35021042146029618209966128923, 2.91049022848173918235475093563, 4.62606190514689230156777348903, 5.45498881352701941400877597056, 6.44912600717094385911057205493, 7.18008565536287803926850182462, 7.968926470881624564798648519485, 8.824488093944440135428863578877, 10.16301143950663709372774734815

Graph of the $Z$-function along the critical line