Properties

Label 2-960-8.5-c1-0-0
Degree $2$
Conductor $960$
Sign $-0.965 - 0.258i$
Analytic cond. $7.66563$
Root an. cond. $2.76868$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s i·5-s − 2·7-s − 9-s + 1.46i·11-s − 1.46i·13-s + 15-s − 3.46·17-s + 6.92i·19-s − 2i·21-s − 4·23-s − 25-s i·27-s + 4.92i·29-s − 7.46·31-s + ⋯
L(s)  = 1  + 0.577i·3-s − 0.447i·5-s − 0.755·7-s − 0.333·9-s + 0.441i·11-s − 0.406i·13-s + 0.258·15-s − 0.840·17-s + 1.58i·19-s − 0.436i·21-s − 0.834·23-s − 0.200·25-s − 0.192i·27-s + 0.915i·29-s − 1.34·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 - 0.258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(960\)    =    \(2^{6} \cdot 3 \cdot 5\)
Sign: $-0.965 - 0.258i$
Analytic conductor: \(7.66563\)
Root analytic conductor: \(2.76868\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{960} (481, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 960,\ (\ :1/2),\ -0.965 - 0.258i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0561921 + 0.426821i\)
\(L(\frac12)\) \(\approx\) \(0.0561921 + 0.426821i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 + iT \)
good7 \( 1 + 2T + 7T^{2} \)
11 \( 1 - 1.46iT - 11T^{2} \)
13 \( 1 + 1.46iT - 13T^{2} \)
17 \( 1 + 3.46T + 17T^{2} \)
19 \( 1 - 6.92iT - 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 4.92iT - 29T^{2} \)
31 \( 1 + 7.46T + 31T^{2} \)
37 \( 1 + 2.53iT - 37T^{2} \)
41 \( 1 + 8.92T + 41T^{2} \)
43 \( 1 - 6.92iT - 43T^{2} \)
47 \( 1 - 4T + 47T^{2} \)
53 \( 1 + 12.9iT - 53T^{2} \)
59 \( 1 - 2.53iT - 59T^{2} \)
61 \( 1 - 4iT - 61T^{2} \)
67 \( 1 - 6.92iT - 67T^{2} \)
71 \( 1 + 6.92T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 - 6.39T + 79T^{2} \)
83 \( 1 + 8iT - 83T^{2} \)
89 \( 1 + 12.9T + 89T^{2} \)
97 \( 1 - 0.928T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19485394336769475921239115015, −9.708826610739511848773486215761, −8.823961227443358454416612792019, −8.057002644153694982699164863221, −6.99121605412110690812953763470, −6.00275596419484365203390871301, −5.20202905090805955754151396484, −4.11004329381752899349374828778, −3.33007010539779106782583254286, −1.86095555405810258373922402236, 0.18572842624847487243850789688, 2.06663045020158302442231631586, 3.06127327217362228335623237215, 4.16650753041499254463902367224, 5.45019366981643563032793904104, 6.49068351820525679154532060251, 6.88227941416571216392276642571, 7.88792197553860943065143877808, 8.898957335225494009222580641807, 9.503994028980192511300549039624

Graph of the $Z$-function along the critical line