L(s) = 1 | + i·3-s − i·5-s − 2·7-s − 9-s + 1.46i·11-s − 1.46i·13-s + 15-s − 3.46·17-s + 6.92i·19-s − 2i·21-s − 4·23-s − 25-s − i·27-s + 4.92i·29-s − 7.46·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 0.447i·5-s − 0.755·7-s − 0.333·9-s + 0.441i·11-s − 0.406i·13-s + 0.258·15-s − 0.840·17-s + 1.58i·19-s − 0.436i·21-s − 0.834·23-s − 0.200·25-s − 0.192i·27-s + 0.915i·29-s − 1.34·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(−0.965−0.258i)Λ(2−s)
Λ(s)=(=(960s/2ΓC(s+1/2)L(s)(−0.965−0.258i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
−0.965−0.258i
|
Analytic conductor: |
7.66563 |
Root analytic conductor: |
2.76868 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(481,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :1/2), −0.965−0.258i)
|
Particular Values
L(1) |
≈ |
0.0561921+0.426821i |
L(21) |
≈ |
0.0561921+0.426821i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1+iT |
good | 7 | 1+2T+7T2 |
| 11 | 1−1.46iT−11T2 |
| 13 | 1+1.46iT−13T2 |
| 17 | 1+3.46T+17T2 |
| 19 | 1−6.92iT−19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1−4.92iT−29T2 |
| 31 | 1+7.46T+31T2 |
| 37 | 1+2.53iT−37T2 |
| 41 | 1+8.92T+41T2 |
| 43 | 1−6.92iT−43T2 |
| 47 | 1−4T+47T2 |
| 53 | 1+12.9iT−53T2 |
| 59 | 1−2.53iT−59T2 |
| 61 | 1−4iT−61T2 |
| 67 | 1−6.92iT−67T2 |
| 71 | 1+6.92T+71T2 |
| 73 | 1−10T+73T2 |
| 79 | 1−6.39T+79T2 |
| 83 | 1+8iT−83T2 |
| 89 | 1+12.9T+89T2 |
| 97 | 1−0.928T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19485394336769475921239115015, −9.708826610739511848773486215761, −8.823961227443358454416612792019, −8.057002644153694982699164863221, −6.99121605412110690812953763470, −6.00275596419484365203390871301, −5.20202905090805955754151396484, −4.11004329381752899349374828778, −3.33007010539779106782583254286, −1.86095555405810258373922402236,
0.18572842624847487243850789688, 2.06663045020158302442231631586, 3.06127327217362228335623237215, 4.16650753041499254463902367224, 5.45019366981643563032793904104, 6.49068351820525679154532060251, 6.88227941416571216392276642571, 7.88792197553860943065143877808, 8.898957335225494009222580641807, 9.503994028980192511300549039624