Properties

Label 2-960-40.29-c3-0-32
Degree $2$
Conductor $960$
Sign $0.988 - 0.153i$
Analytic cond. $56.6418$
Root an. cond. $7.52607$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + (−6.59 + 9.02i)5-s + 28.2i·7-s + 9·9-s − 23.3i·11-s + 7.81·13-s + (19.7 − 27.0i)15-s − 54.9i·17-s − 137. i·19-s − 84.8i·21-s + 58.1i·23-s + (−37.9 − 119. i)25-s − 27·27-s − 108. i·29-s − 117.·31-s + ⋯
L(s)  = 1  − 0.577·3-s + (−0.590 + 0.807i)5-s + 1.52i·7-s + 0.333·9-s − 0.641i·11-s + 0.166·13-s + (0.340 − 0.466i)15-s − 0.783i·17-s − 1.65i·19-s − 0.881i·21-s + 0.527i·23-s + (−0.303 − 0.952i)25-s − 0.192·27-s − 0.691i·29-s − 0.680·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.153i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.988 - 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(960\)    =    \(2^{6} \cdot 3 \cdot 5\)
Sign: $0.988 - 0.153i$
Analytic conductor: \(56.6418\)
Root analytic conductor: \(7.52607\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{960} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 960,\ (\ :3/2),\ 0.988 - 0.153i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.204705461\)
\(L(\frac12)\) \(\approx\) \(1.204705461\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 + (6.59 - 9.02i)T \)
good7 \( 1 - 28.2iT - 343T^{2} \)
11 \( 1 + 23.3iT - 1.33e3T^{2} \)
13 \( 1 - 7.81T + 2.19e3T^{2} \)
17 \( 1 + 54.9iT - 4.91e3T^{2} \)
19 \( 1 + 137. iT - 6.85e3T^{2} \)
23 \( 1 - 58.1iT - 1.21e4T^{2} \)
29 \( 1 + 108. iT - 2.43e4T^{2} \)
31 \( 1 + 117.T + 2.97e4T^{2} \)
37 \( 1 - 62.2T + 5.06e4T^{2} \)
41 \( 1 - 69.0T + 6.89e4T^{2} \)
43 \( 1 - 456.T + 7.95e4T^{2} \)
47 \( 1 - 326. iT - 1.03e5T^{2} \)
53 \( 1 - 61.7T + 1.48e5T^{2} \)
59 \( 1 - 641. iT - 2.05e5T^{2} \)
61 \( 1 + 818. iT - 2.26e5T^{2} \)
67 \( 1 - 493.T + 3.00e5T^{2} \)
71 \( 1 + 669.T + 3.57e5T^{2} \)
73 \( 1 + 14.8iT - 3.89e5T^{2} \)
79 \( 1 - 1.06e3T + 4.93e5T^{2} \)
83 \( 1 + 1.02e3T + 5.71e5T^{2} \)
89 \( 1 - 1.07e3T + 7.04e5T^{2} \)
97 \( 1 + 69.1iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.509382247496534834160637482846, −8.970660575696004040168738601056, −7.913981343708345733344514051576, −7.05965253424353100914879663812, −6.15207232749671642281571855552, −5.48062338467604103336826041378, −4.42713033866703087666520064871, −3.11003139919101919996935569397, −2.36766306019893542050308799776, −0.51970014426095038170418484659, 0.72537124547935571739210808468, 1.65577485672724815242347972606, 3.76831220741109479209845304427, 4.14510289072269305541871130640, 5.16062612240399524763081909221, 6.18989360684978095382292079312, 7.25082200962248805795338789787, 7.77513157891826871843683373024, 8.707414101963792870360073387441, 9.830927970358815925071629848617

Graph of the $Z$-function along the critical line