L(s) = 1 | − 3·3-s + (−6.59 + 9.02i)5-s + 28.2i·7-s + 9·9-s − 23.3i·11-s + 7.81·13-s + (19.7 − 27.0i)15-s − 54.9i·17-s − 137. i·19-s − 84.8i·21-s + 58.1i·23-s + (−37.9 − 119. i)25-s − 27·27-s − 108. i·29-s − 117.·31-s + ⋯ |
L(s) = 1 | − 0.577·3-s + (−0.590 + 0.807i)5-s + 1.52i·7-s + 0.333·9-s − 0.641i·11-s + 0.166·13-s + (0.340 − 0.466i)15-s − 0.783i·17-s − 1.65i·19-s − 0.881i·21-s + 0.527i·23-s + (−0.303 − 0.952i)25-s − 0.192·27-s − 0.691i·29-s − 0.680·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.988−0.153i)Λ(4−s)
Λ(s)=(=(960s/2ΓC(s+3/2)L(s)(0.988−0.153i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.988−0.153i
|
Analytic conductor: |
56.6418 |
Root analytic conductor: |
7.52607 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :3/2), 0.988−0.153i)
|
Particular Values
L(2) |
≈ |
1.204705461 |
L(21) |
≈ |
1.204705461 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 5 | 1+(6.59−9.02i)T |
good | 7 | 1−28.2iT−343T2 |
| 11 | 1+23.3iT−1.33e3T2 |
| 13 | 1−7.81T+2.19e3T2 |
| 17 | 1+54.9iT−4.91e3T2 |
| 19 | 1+137.iT−6.85e3T2 |
| 23 | 1−58.1iT−1.21e4T2 |
| 29 | 1+108.iT−2.43e4T2 |
| 31 | 1+117.T+2.97e4T2 |
| 37 | 1−62.2T+5.06e4T2 |
| 41 | 1−69.0T+6.89e4T2 |
| 43 | 1−456.T+7.95e4T2 |
| 47 | 1−326.iT−1.03e5T2 |
| 53 | 1−61.7T+1.48e5T2 |
| 59 | 1−641.iT−2.05e5T2 |
| 61 | 1+818.iT−2.26e5T2 |
| 67 | 1−493.T+3.00e5T2 |
| 71 | 1+669.T+3.57e5T2 |
| 73 | 1+14.8iT−3.89e5T2 |
| 79 | 1−1.06e3T+4.93e5T2 |
| 83 | 1+1.02e3T+5.71e5T2 |
| 89 | 1−1.07e3T+7.04e5T2 |
| 97 | 1+69.1iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.509382247496534834160637482846, −8.970660575696004040168738601056, −7.913981343708345733344514051576, −7.05965253424353100914879663812, −6.15207232749671642281571855552, −5.48062338467604103336826041378, −4.42713033866703087666520064871, −3.11003139919101919996935569397, −2.36766306019893542050308799776, −0.51970014426095038170418484659,
0.72537124547935571739210808468, 1.65577485672724815242347972606, 3.76831220741109479209845304427, 4.14510289072269305541871130640, 5.16062612240399524763081909221, 6.18989360684978095382292079312, 7.25082200962248805795338789787, 7.77513157891826871843683373024, 8.707414101963792870360073387441, 9.830927970358815925071629848617