L(s) = 1 | − 3i·3-s + (−5 − 10i)5-s + 4i·7-s − 9·9-s + 28·11-s − 16i·13-s + (−30 + 15i)15-s + 108i·17-s + 32·19-s + 12·21-s + 28i·23-s + (−75 + 100i)25-s + 27i·27-s − 238·29-s − 180·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.447 − 0.894i)5-s + 0.215i·7-s − 0.333·9-s + 0.767·11-s − 0.341i·13-s + (−0.516 + 0.258i)15-s + 1.54i·17-s + 0.386·19-s + 0.124·21-s + 0.253i·23-s + (−0.599 + 0.800i)25-s + 0.192i·27-s − 1.52·29-s − 1.04·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.894−0.447i)Λ(4−s)
Λ(s)=(=(960s/2ΓC(s+3/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
56.6418 |
Root analytic conductor: |
7.52607 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(769,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :3/2), 0.894−0.447i)
|
Particular Values
L(2) |
≈ |
1.410541120 |
L(21) |
≈ |
1.410541120 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
| 5 | 1+(5+10i)T |
good | 7 | 1−4iT−343T2 |
| 11 | 1−28T+1.33e3T2 |
| 13 | 1+16iT−2.19e3T2 |
| 17 | 1−108iT−4.91e3T2 |
| 19 | 1−32T+6.85e3T2 |
| 23 | 1−28iT−1.21e4T2 |
| 29 | 1+238T+2.43e4T2 |
| 31 | 1+180T+2.97e4T2 |
| 37 | 1−40iT−5.06e4T2 |
| 41 | 1−422T+6.89e4T2 |
| 43 | 1−276iT−7.95e4T2 |
| 47 | 1−60iT−1.03e5T2 |
| 53 | 1−220iT−1.48e5T2 |
| 59 | 1+804T+2.05e5T2 |
| 61 | 1−358T+2.26e5T2 |
| 67 | 1−884iT−3.00e5T2 |
| 71 | 1+64T+3.57e5T2 |
| 73 | 1−152iT−3.89e5T2 |
| 79 | 1−932T+4.93e5T2 |
| 83 | 1+1.29e3iT−5.71e5T2 |
| 89 | 1−1.14e3T+7.04e5T2 |
| 97 | 1−824iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.375669761276239025467676266918, −8.921617590435870099819280121792, −7.940231604187553626058958271784, −7.40581940253367705944549159150, −6.13658793907514267403701130081, −5.54396947160107077586116768728, −4.29680459460580734505408145264, −3.47767673272146598574600325041, −1.90944381370871878544777922199, −0.993314128233941416643496697739,
0.42363763931967096986831234987, 2.20491403632821746159877990550, 3.38026130916138417331494975619, 4.05114616346553013144725261851, 5.13972110641544922493447694840, 6.20349161443271520272515510734, 7.17358872072716866533678592072, 7.66939592366608689363062534726, 9.088790357346323675094785603966, 9.437970580805497472742977447913