Properties

Label 2-960-5.4-c3-0-18
Degree $2$
Conductor $960$
Sign $0.894 - 0.447i$
Analytic cond. $56.6418$
Root an. cond. $7.52607$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3i·3-s + (−5 − 10i)5-s + 4i·7-s − 9·9-s + 28·11-s − 16i·13-s + (−30 + 15i)15-s + 108i·17-s + 32·19-s + 12·21-s + 28i·23-s + (−75 + 100i)25-s + 27i·27-s − 238·29-s − 180·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + (−0.447 − 0.894i)5-s + 0.215i·7-s − 0.333·9-s + 0.767·11-s − 0.341i·13-s + (−0.516 + 0.258i)15-s + 1.54i·17-s + 0.386·19-s + 0.124·21-s + 0.253i·23-s + (−0.599 + 0.800i)25-s + 0.192i·27-s − 1.52·29-s − 1.04·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(960\)    =    \(2^{6} \cdot 3 \cdot 5\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(56.6418\)
Root analytic conductor: \(7.52607\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{960} (769, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 960,\ (\ :3/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.410541120\)
\(L(\frac12)\) \(\approx\) \(1.410541120\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3iT \)
5 \( 1 + (5 + 10i)T \)
good7 \( 1 - 4iT - 343T^{2} \)
11 \( 1 - 28T + 1.33e3T^{2} \)
13 \( 1 + 16iT - 2.19e3T^{2} \)
17 \( 1 - 108iT - 4.91e3T^{2} \)
19 \( 1 - 32T + 6.85e3T^{2} \)
23 \( 1 - 28iT - 1.21e4T^{2} \)
29 \( 1 + 238T + 2.43e4T^{2} \)
31 \( 1 + 180T + 2.97e4T^{2} \)
37 \( 1 - 40iT - 5.06e4T^{2} \)
41 \( 1 - 422T + 6.89e4T^{2} \)
43 \( 1 - 276iT - 7.95e4T^{2} \)
47 \( 1 - 60iT - 1.03e5T^{2} \)
53 \( 1 - 220iT - 1.48e5T^{2} \)
59 \( 1 + 804T + 2.05e5T^{2} \)
61 \( 1 - 358T + 2.26e5T^{2} \)
67 \( 1 - 884iT - 3.00e5T^{2} \)
71 \( 1 + 64T + 3.57e5T^{2} \)
73 \( 1 - 152iT - 3.89e5T^{2} \)
79 \( 1 - 932T + 4.93e5T^{2} \)
83 \( 1 + 1.29e3iT - 5.71e5T^{2} \)
89 \( 1 - 1.14e3T + 7.04e5T^{2} \)
97 \( 1 - 824iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.375669761276239025467676266918, −8.921617590435870099819280121792, −7.940231604187553626058958271784, −7.40581940253367705944549159150, −6.13658793907514267403701130081, −5.54396947160107077586116768728, −4.29680459460580734505408145264, −3.47767673272146598574600325041, −1.90944381370871878544777922199, −0.993314128233941416643496697739, 0.42363763931967096986831234987, 2.20491403632821746159877990550, 3.38026130916138417331494975619, 4.05114616346553013144725261851, 5.13972110641544922493447694840, 6.20349161443271520272515510734, 7.17358872072716866533678592072, 7.66939592366608689363062534726, 9.088790357346323675094785603966, 9.437970580805497472742977447913

Graph of the $Z$-function along the critical line