L(s) = 1 | + 3i·3-s + (−11.1 + 1.29i)5-s − 16.2i·7-s − 9·9-s − 40.2·11-s − 19.7i·13-s + (−3.89 − 33.3i)15-s − 83.0i·17-s + 48.8·19-s + 48.6·21-s − 1.61i·23-s + (121. − 28.8i)25-s − 27i·27-s − 24.5·29-s + 12.4·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.993 + 0.116i)5-s − 0.875i·7-s − 0.333·9-s − 1.10·11-s − 0.422i·13-s + (−0.0670 − 0.573i)15-s − 1.18i·17-s + 0.589·19-s + 0.505·21-s − 0.0146i·23-s + (0.973 − 0.230i)25-s − 0.192i·27-s − 0.157·29-s + 0.0719·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.116 - 0.993i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.116 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.7398836158\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7398836158\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3iT \) |
| 5 | \( 1 + (11.1 - 1.29i)T \) |
good | 7 | \( 1 + 16.2iT - 343T^{2} \) |
| 11 | \( 1 + 40.2T + 1.33e3T^{2} \) |
| 13 | \( 1 + 19.7iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 83.0iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 48.8T + 6.85e3T^{2} \) |
| 23 | \( 1 + 1.61iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 24.5T + 2.43e4T^{2} \) |
| 31 | \( 1 - 12.4T + 2.97e4T^{2} \) |
| 37 | \( 1 - 325. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 242.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 367. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 204. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 61.5iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 112.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 477.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 558. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 558.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.01e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.15e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.15e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 96.9T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.15e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08845511056450179096439683863, −9.063668819743665929497923799160, −7.975465943201648850639631464684, −7.57654437412044950683577284029, −6.60461857970188157464548023136, −5.19805131087996443757181601055, −4.63897666143510660975661492301, −3.52424259675361632723343513281, −2.80682396021086534671052688076, −0.810534400152199493417260728516,
0.25631775832331570205085822254, 1.80484286687918247020763659406, 2.89842614835947036478143944502, 3.97110719126549774277080327935, 5.16172532638493311697288665766, 5.91794218707413854285266948417, 7.04579010513617666373750870874, 7.78516268670009788251395143883, 8.468444708679054963411658983035, 9.163300974027634675921210679798