L(s) = 1 | + 3i·3-s + (−11.1 + 1.29i)5-s − 16.2i·7-s − 9·9-s − 40.2·11-s − 19.7i·13-s + (−3.89 − 33.3i)15-s − 83.0i·17-s + 48.8·19-s + 48.6·21-s − 1.61i·23-s + (121. − 28.8i)25-s − 27i·27-s − 24.5·29-s + 12.4·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.993 + 0.116i)5-s − 0.875i·7-s − 0.333·9-s − 1.10·11-s − 0.422i·13-s + (−0.0670 − 0.573i)15-s − 1.18i·17-s + 0.589·19-s + 0.505·21-s − 0.0146i·23-s + (0.973 − 0.230i)25-s − 0.192i·27-s − 0.157·29-s + 0.0719·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(−0.116−0.993i)Λ(4−s)
Λ(s)=(=(960s/2ΓC(s+3/2)L(s)(−0.116−0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
−0.116−0.993i
|
Analytic conductor: |
56.6418 |
Root analytic conductor: |
7.52607 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(769,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :3/2), −0.116−0.993i)
|
Particular Values
L(2) |
≈ |
0.7398836158 |
L(21) |
≈ |
0.7398836158 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3iT |
| 5 | 1+(11.1−1.29i)T |
good | 7 | 1+16.2iT−343T2 |
| 11 | 1+40.2T+1.33e3T2 |
| 13 | 1+19.7iT−2.19e3T2 |
| 17 | 1+83.0iT−4.91e3T2 |
| 19 | 1−48.8T+6.85e3T2 |
| 23 | 1+1.61iT−1.21e4T2 |
| 29 | 1+24.5T+2.43e4T2 |
| 31 | 1−12.4T+2.97e4T2 |
| 37 | 1−325.iT−5.06e4T2 |
| 41 | 1+242.T+6.89e4T2 |
| 43 | 1−367.iT−7.95e4T2 |
| 47 | 1+204.iT−1.03e5T2 |
| 53 | 1−61.5iT−1.48e5T2 |
| 59 | 1−112.T+2.05e5T2 |
| 61 | 1+477.T+2.26e5T2 |
| 67 | 1+558.iT−3.00e5T2 |
| 71 | 1+558.T+3.57e5T2 |
| 73 | 1−1.01e3iT−3.89e5T2 |
| 79 | 1−1.15e3T+4.93e5T2 |
| 83 | 1+1.15e3iT−5.71e5T2 |
| 89 | 1+96.9T+7.04e5T2 |
| 97 | 1−1.15e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.08845511056450179096439683863, −9.063668819743665929497923799160, −7.975465943201648850639631464684, −7.57654437412044950683577284029, −6.60461857970188157464548023136, −5.19805131087996443757181601055, −4.63897666143510660975661492301, −3.52424259675361632723343513281, −2.80682396021086534671052688076, −0.810534400152199493417260728516,
0.25631775832331570205085822254, 1.80484286687918247020763659406, 2.89842614835947036478143944502, 3.97110719126549774277080327935, 5.16172532638493311697288665766, 5.91794218707413854285266948417, 7.04579010513617666373750870874, 7.78516268670009788251395143883, 8.468444708679054963411658983035, 9.163300974027634675921210679798