L(s) = 1 | + 3-s − 3.12·7-s + 9-s − 2·11-s + 3.12·13-s − 7.12·17-s + 3.12·19-s − 3.12·21-s + 3.12·23-s + 27-s + 8.24·29-s − 1.12·31-s − 2·33-s − 3.12·37-s + 3.12·39-s − 2·41-s + 10.2·43-s − 4.87·47-s + 2.75·49-s − 7.12·51-s − 10·53-s + 3.12·57-s − 6·59-s − 2·61-s − 3.12·63-s + 10.2·67-s + 3.12·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.18·7-s + 0.333·9-s − 0.603·11-s + 0.866·13-s − 1.72·17-s + 0.716·19-s − 0.681·21-s + 0.651·23-s + 0.192·27-s + 1.53·29-s − 0.201·31-s − 0.348·33-s − 0.513·37-s + 0.500·39-s − 0.312·41-s + 1.56·43-s − 0.711·47-s + 0.393·49-s − 0.997·51-s − 1.37·53-s + 0.413·57-s − 0.781·59-s − 0.256·61-s − 0.393·63-s + 1.25·67-s + 0.375·69-s + ⋯ |
Λ(s)=(=(9600s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9600s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1 |
good | 7 | 1+3.12T+7T2 |
| 11 | 1+2T+11T2 |
| 13 | 1−3.12T+13T2 |
| 17 | 1+7.12T+17T2 |
| 19 | 1−3.12T+19T2 |
| 23 | 1−3.12T+23T2 |
| 29 | 1−8.24T+29T2 |
| 31 | 1+1.12T+31T2 |
| 37 | 1+3.12T+37T2 |
| 41 | 1+2T+41T2 |
| 43 | 1−10.2T+43T2 |
| 47 | 1+4.87T+47T2 |
| 53 | 1+10T+53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1−10.2T+67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1+12.2T+73T2 |
| 79 | 1−13.1T+79T2 |
| 83 | 1+4T+83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.29258196287385806982992246008, −6.58937695543102705965759717968, −6.26306015914245922683108662934, −5.22482614286641376420958949185, −4.49932585098856861215033379606, −3.67054016579666201725284017080, −2.99423792522344929367161348330, −2.41752823443718083830712036522, −1.23548665275784589508844217394, 0,
1.23548665275784589508844217394, 2.41752823443718083830712036522, 2.99423792522344929367161348330, 3.67054016579666201725284017080, 4.49932585098856861215033379606, 5.22482614286641376420958949185, 6.26306015914245922683108662934, 6.58937695543102705965759717968, 7.29258196287385806982992246008