Properties

Label 2-9600-1.1-c1-0-150
Degree $2$
Conductor $9600$
Sign $-1$
Analytic cond. $76.6563$
Root an. cond. $8.75536$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5.12·7-s + 9-s − 2·11-s − 5.12·13-s + 1.12·17-s − 5.12·19-s + 5.12·21-s − 5.12·23-s + 27-s − 8.24·29-s + 7.12·31-s − 2·33-s + 5.12·37-s − 5.12·39-s − 2·41-s − 6.24·43-s − 13.1·47-s + 19.2·49-s + 1.12·51-s − 10·53-s − 5.12·57-s − 6·59-s − 2·61-s + 5.12·63-s − 6.24·67-s − 5.12·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.93·7-s + 0.333·9-s − 0.603·11-s − 1.42·13-s + 0.272·17-s − 1.17·19-s + 1.11·21-s − 1.06·23-s + 0.192·27-s − 1.53·29-s + 1.27·31-s − 0.348·33-s + 0.842·37-s − 0.820·39-s − 0.312·41-s − 0.952·43-s − 1.91·47-s + 2.74·49-s + 0.157·51-s − 1.37·53-s − 0.678·57-s − 0.781·59-s − 0.256·61-s + 0.645·63-s − 0.763·67-s − 0.616·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9600\)    =    \(2^{7} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(76.6563\)
Root analytic conductor: \(8.75536\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
good7 \( 1 - 5.12T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 5.12T + 13T^{2} \)
17 \( 1 - 1.12T + 17T^{2} \)
19 \( 1 + 5.12T + 19T^{2} \)
23 \( 1 + 5.12T + 23T^{2} \)
29 \( 1 + 8.24T + 29T^{2} \)
31 \( 1 - 7.12T + 31T^{2} \)
37 \( 1 - 5.12T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 6.24T + 43T^{2} \)
47 \( 1 + 13.1T + 47T^{2} \)
53 \( 1 + 10T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 6.24T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 - 4.24T + 73T^{2} \)
79 \( 1 - 4.87T + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68000445049182951241916863412, −6.82216966543961239273177646666, −5.91044808789046285880545403631, −4.98285669183716440274428081484, −4.71794775404622438084136123861, −3.96122367147727515843844431394, −2.83438031636290181879678904414, −2.08206522742949308385468259978, −1.57809938123855289726341672185, 0, 1.57809938123855289726341672185, 2.08206522742949308385468259978, 2.83438031636290181879678904414, 3.96122367147727515843844431394, 4.71794775404622438084136123861, 4.98285669183716440274428081484, 5.91044808789046285880545403631, 6.82216966543961239273177646666, 7.68000445049182951241916863412

Graph of the $Z$-function along the critical line