L(s) = 1 | + 3-s + 5.12·7-s + 9-s − 2·11-s − 5.12·13-s + 1.12·17-s − 5.12·19-s + 5.12·21-s − 5.12·23-s + 27-s − 8.24·29-s + 7.12·31-s − 2·33-s + 5.12·37-s − 5.12·39-s − 2·41-s − 6.24·43-s − 13.1·47-s + 19.2·49-s + 1.12·51-s − 10·53-s − 5.12·57-s − 6·59-s − 2·61-s + 5.12·63-s − 6.24·67-s − 5.12·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.93·7-s + 0.333·9-s − 0.603·11-s − 1.42·13-s + 0.272·17-s − 1.17·19-s + 1.11·21-s − 1.06·23-s + 0.192·27-s − 1.53·29-s + 1.27·31-s − 0.348·33-s + 0.842·37-s − 0.820·39-s − 0.312·41-s − 0.952·43-s − 1.91·47-s + 2.74·49-s + 0.157·51-s − 1.37·53-s − 0.678·57-s − 0.781·59-s − 0.256·61-s + 0.645·63-s − 0.763·67-s − 0.616·69-s + ⋯ |
Λ(s)=(=(9600s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9600s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1 |
good | 7 | 1−5.12T+7T2 |
| 11 | 1+2T+11T2 |
| 13 | 1+5.12T+13T2 |
| 17 | 1−1.12T+17T2 |
| 19 | 1+5.12T+19T2 |
| 23 | 1+5.12T+23T2 |
| 29 | 1+8.24T+29T2 |
| 31 | 1−7.12T+31T2 |
| 37 | 1−5.12T+37T2 |
| 41 | 1+2T+41T2 |
| 43 | 1+6.24T+43T2 |
| 47 | 1+13.1T+47T2 |
| 53 | 1+10T+53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1+6.24T+67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1−4.24T+73T2 |
| 79 | 1−4.87T+79T2 |
| 83 | 1+4T+83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.68000445049182951241916863412, −6.82216966543961239273177646666, −5.91044808789046285880545403631, −4.98285669183716440274428081484, −4.71794775404622438084136123861, −3.96122367147727515843844431394, −2.83438031636290181879678904414, −2.08206522742949308385468259978, −1.57809938123855289726341672185, 0,
1.57809938123855289726341672185, 2.08206522742949308385468259978, 2.83438031636290181879678904414, 3.96122367147727515843844431394, 4.71794775404622438084136123861, 4.98285669183716440274428081484, 5.91044808789046285880545403631, 6.82216966543961239273177646666, 7.68000445049182951241916863412