L(s) = 1 | + 2.61·2-s + (0.437 − 0.756i)3-s + 4.85·4-s + (−1.11 − 1.93i)5-s + (1.14 − 1.98i)6-s + (0.5 − 0.866i)7-s + 7.47·8-s + (1.11 + 1.93i)9-s + (−2.92 − 5.06i)10-s + (−2.12 − 3.67i)11-s + (2.12 − 3.67i)12-s + (1.31 + 2.27i)13-s + (1.30 − 2.26i)14-s − 1.95·15-s + 9.85·16-s + (−1.85 + 3.20i)17-s + ⋯ |
L(s) = 1 | + 1.85·2-s + (0.252 − 0.437i)3-s + 2.42·4-s + (−0.499 − 0.866i)5-s + (0.467 − 0.809i)6-s + (0.188 − 0.327i)7-s + 2.64·8-s + (0.372 + 0.645i)9-s + (−0.925 − 1.60i)10-s + (−0.639 − 1.10i)11-s + (0.612 − 1.06i)12-s + (0.363 + 0.629i)13-s + (0.349 − 0.605i)14-s − 0.504·15-s + 2.46·16-s + (−0.448 + 0.777i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.654 + 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.654 + 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.49002 - 2.05014i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.49002 - 2.05014i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 - 2.61T + 2T^{2} \) |
| 3 | \( 1 + (-0.437 + 0.756i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.11 + 1.93i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.12 + 3.67i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.31 - 2.27i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.85 - 3.20i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 2.62T + 23T^{2} \) |
| 29 | \( 1 + 0.540T + 29T^{2} \) |
| 37 | \( 1 + (2.12 - 3.67i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.736 - 1.27i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.84 + 8.39i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 9.70T + 47T^{2} \) |
| 53 | \( 1 + (-6.86 - 11.8i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.97 - 10.3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 13.9T + 61T^{2} \) |
| 67 | \( 1 + (3 + 5.19i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.736 - 1.27i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (2.12 + 3.67i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.810 + 1.40i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.58 - 2.73i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 15.3T + 89T^{2} \) |
| 97 | \( 1 + 7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43479321895908111275620930198, −8.693923852931748528576924969250, −8.041002773323981646165358670821, −7.20349932819183868157519411949, −6.22531802092609790994123553813, −5.40799917324994296926296640665, −4.45616205812294243222859517793, −3.92017055504253646069073535816, −2.66471075011528838648739515231, −1.49297488491669257150666899869,
2.21264936014318618258699664624, 3.10340142104226912934817451413, 3.88430349662771912351977390043, 4.73110586361315207068764110934, 5.54766683206013300992201288687, 6.71477636231847071538529502754, 7.13261677201397136711678479552, 8.159296769280443686902100522808, 9.607226082398068551389076347079, 10.41741326216289341687404247163