L(s) = 1 | + 2.61·2-s + (0.437 − 0.756i)3-s + 4.85·4-s + (−1.11 − 1.93i)5-s + (1.14 − 1.98i)6-s + (0.5 − 0.866i)7-s + 7.47·8-s + (1.11 + 1.93i)9-s + (−2.92 − 5.06i)10-s + (−2.12 − 3.67i)11-s + (2.12 − 3.67i)12-s + (1.31 + 2.27i)13-s + (1.30 − 2.26i)14-s − 1.95·15-s + 9.85·16-s + (−1.85 + 3.20i)17-s + ⋯ |
L(s) = 1 | + 1.85·2-s + (0.252 − 0.437i)3-s + 2.42·4-s + (−0.499 − 0.866i)5-s + (0.467 − 0.809i)6-s + (0.188 − 0.327i)7-s + 2.64·8-s + (0.372 + 0.645i)9-s + (−0.925 − 1.60i)10-s + (−0.639 − 1.10i)11-s + (0.612 − 1.06i)12-s + (0.363 + 0.629i)13-s + (0.349 − 0.605i)14-s − 0.504·15-s + 2.46·16-s + (−0.448 + 0.777i)17-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(0.654+0.755i)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)(0.654+0.755i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
0.654+0.755i
|
Analytic conductor: |
7.67362 |
Root analytic conductor: |
2.77013 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(439,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :1/2), 0.654+0.755i)
|
Particular Values
L(1) |
≈ |
4.49002−2.05014i |
L(21) |
≈ |
4.49002−2.05014i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1−2.61T+2T2 |
| 3 | 1+(−0.437+0.756i)T+(−1.5−2.59i)T2 |
| 5 | 1+(1.11+1.93i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−0.5+0.866i)T+(−3.5−6.06i)T2 |
| 11 | 1+(2.12+3.67i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−1.31−2.27i)T+(−6.5+11.2i)T2 |
| 17 | 1+(1.85−3.20i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.5−0.866i)T+(−9.5−16.4i)T2 |
| 23 | 1+2.62T+23T2 |
| 29 | 1+0.540T+29T2 |
| 37 | 1+(2.12−3.67i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−0.736−1.27i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−4.84+8.39i)T+(−21.5−37.2i)T2 |
| 47 | 1+9.70T+47T2 |
| 53 | 1+(−6.86−11.8i)T+(−26.5+45.8i)T2 |
| 59 | 1+(5.97−10.3i)T+(−29.5−51.0i)T2 |
| 61 | 1−13.9T+61T2 |
| 67 | 1+(3+5.19i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−0.736−1.27i)T+(−35.5+61.4i)T2 |
| 73 | 1+(2.12+3.67i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−0.810+1.40i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−1.58−2.73i)T+(−41.5+71.8i)T2 |
| 89 | 1+15.3T+89T2 |
| 97 | 1+7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.43479321895908111275620930198, −8.693923852931748528576924969250, −8.041002773323981646165358670821, −7.20349932819183868157519411949, −6.22531802092609790994123553813, −5.40799917324994296926296640665, −4.45616205812294243222859517793, −3.92017055504253646069073535816, −2.66471075011528838648739515231, −1.49297488491669257150666899869,
2.21264936014318618258699664624, 3.10340142104226912934817451413, 3.88430349662771912351977390043, 4.73110586361315207068764110934, 5.54766683206013300992201288687, 6.71477636231847071538529502754, 7.13261677201397136711678479552, 8.159296769280443686902100522808, 9.607226082398068551389076347079, 10.41741326216289341687404247163