L(s) = 1 | + (−0.335 − 0.243i)2-s + (0.335 − 0.243i)3-s + (−0.565 − 1.73i)4-s + 5-s − 0.171·6-s + (−0.127 − 0.393i)7-s + (−0.490 + 1.50i)8-s + (−0.874 + 2.68i)9-s + (−0.335 − 0.243i)10-s + (−1.00 − 3.08i)11-s + (−0.612 − 0.445i)12-s + (−3.09 + 2.25i)13-s + (−0.0530 + 0.163i)14-s + (0.335 − 0.243i)15-s + (−2.42 + 1.76i)16-s + (1.80 − 5.54i)17-s + ⋯ |
L(s) = 1 | + (−0.236 − 0.172i)2-s + (0.193 − 0.140i)3-s + (−0.282 − 0.869i)4-s + 0.447·5-s − 0.0700·6-s + (−0.0483 − 0.148i)7-s + (−0.173 + 0.533i)8-s + (−0.291 + 0.896i)9-s + (−0.105 − 0.0769i)10-s + (−0.302 − 0.929i)11-s + (−0.176 − 0.128i)12-s + (−0.859 + 0.624i)13-s + (−0.0141 + 0.0436i)14-s + (0.0865 − 0.0628i)15-s + (−0.606 + 0.440i)16-s + (0.436 − 1.34i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0753i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 + 0.0753i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0233267 - 0.617873i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0233267 - 0.617873i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (0.335 + 0.243i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (-0.335 + 0.243i)T + (0.927 - 2.85i)T^{2} \) |
| 5 | \( 1 - T + 5T^{2} \) |
| 7 | \( 1 + (0.127 + 0.393i)T + (-5.66 + 4.11i)T^{2} \) |
| 11 | \( 1 + (1.00 + 3.08i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (3.09 - 2.25i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.80 + 5.54i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (3.57 + 2.59i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-1.23 + 3.80i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (5.52 + 4.01i)T + (8.96 + 27.5i)T^{2} \) |
| 37 | \( 1 + T + 37T^{2} \) |
| 41 | \( 1 + (-6.05 - 4.39i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (8.81 + 6.40i)T + (13.2 + 40.8i)T^{2} \) |
| 47 | \( 1 + (7.81 - 5.67i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (1.80 - 5.54i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (3.29 - 2.39i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 - 2.82T + 61T^{2} \) |
| 67 | \( 1 - 3.24T + 67T^{2} \) |
| 71 | \( 1 + (-0.0219 + 0.0675i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-0.565 - 1.73i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.08 + 6.42i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (8.14 + 5.91i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (1.38 + 4.26i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-1.59 - 4.91i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.624473897633268696458034876125, −8.955637560229606784277821570906, −8.077353363318389909777278706162, −7.10253411403187890065378400369, −6.05514154414205557248586571350, −5.25443760442636536626899706409, −4.50497547103155691378959651773, −2.77818011815767627582475851594, −1.95791126517290227916977239341, −0.28218391925381551714308506094,
1.97528934845772330902290957294, 3.26912413271597384975892766400, 4.02364988197992490867794547603, 5.25747623449343855498335853548, 6.22592049219369445286279461447, 7.22484788100807740332813307316, 7.997849639512335563190360846203, 8.714623845014306132443106274695, 9.721216737444878659724818637144, 9.963093475571762571167269443385