L(s) = 1 | + (1.95 − 1.41i)2-s + (−1.95 − 1.41i)3-s + (1.18 − 3.64i)4-s + 5-s − 5.82·6-s + (0.746 − 2.29i)7-s + (−1.36 − 4.19i)8-s + (0.874 + 2.68i)9-s + (1.95 − 1.41i)10-s + (1.62 − 4.98i)11-s + (−7.47 + 5.43i)12-s + (1.47 + 1.07i)13-s + (−1.80 − 5.54i)14-s + (−1.95 − 1.41i)15-s + (−2.42 − 1.76i)16-s + (0.0530 + 0.163i)17-s + ⋯ |
L(s) = 1 | + (1.38 − 1.00i)2-s + (−1.12 − 0.819i)3-s + (0.591 − 1.82i)4-s + 0.447·5-s − 2.37·6-s + (0.281 − 0.867i)7-s + (−0.482 − 1.48i)8-s + (0.291 + 0.896i)9-s + (0.617 − 0.448i)10-s + (0.488 − 1.50i)11-s + (−2.15 + 1.56i)12-s + (0.410 + 0.298i)13-s + (−0.481 − 1.48i)14-s + (−0.504 − 0.366i)15-s + (−0.606 − 0.440i)16-s + (0.0128 + 0.0395i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0753i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0753i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0965924 + 2.55851i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0965924 + 2.55851i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (-1.95 + 1.41i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (1.95 + 1.41i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 - T + 5T^{2} \) |
| 7 | \( 1 + (-0.746 + 2.29i)T + (-5.66 - 4.11i)T^{2} \) |
| 11 | \( 1 + (-1.62 + 4.98i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (-1.47 - 1.07i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-0.0530 - 0.163i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (1.28 - 0.932i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-1.23 - 3.80i)T + (-18.6 + 13.5i)T^{2} \) |
| 29 | \( 1 + (0.947 - 0.688i)T + (8.96 - 27.5i)T^{2} \) |
| 37 | \( 1 + T + 37T^{2} \) |
| 41 | \( 1 + (7.67 - 5.57i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + (-7.19 + 5.23i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (-1.34 - 0.973i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (0.0530 + 0.163i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-8.14 - 5.91i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + 2.82T + 61T^{2} \) |
| 67 | \( 1 + 5.24T + 67T^{2} \) |
| 71 | \( 1 + (4.34 + 13.3i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (1.18 - 3.64i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-4.71 - 14.4i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-3.29 + 2.39i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + (-3.85 + 11.8i)T + (-72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (-3.34 + 10.2i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20886148213416140093231755693, −8.909320678030390988994398726570, −7.59454033866082650085985133396, −6.50714548773836545000629915671, −5.93956030108375784518281806361, −5.31924054139595423858258647140, −4.14788155802545182707558147771, −3.32752993579582653685878773543, −1.76973640119156840354323532387, −0.926999746360359762691088287768,
2.27064705210076804052635103640, 3.83929580130220073589804698168, 4.64563993681762719192716358557, 5.22981707844418219675641441246, 5.95194659688360011055136543293, 6.57845386758434131250692681364, 7.53788282299152384627974133505, 8.719553289317090767563940607211, 9.734478116487142821882073120487, 10.51670613932175216559625908356