L(s) = 1 | + (1.95 − 1.41i)2-s + (−1.95 − 1.41i)3-s + (1.18 − 3.64i)4-s + 5-s − 5.82·6-s + (0.746 − 2.29i)7-s + (−1.36 − 4.19i)8-s + (0.874 + 2.68i)9-s + (1.95 − 1.41i)10-s + (1.62 − 4.98i)11-s + (−7.47 + 5.43i)12-s + (1.47 + 1.07i)13-s + (−1.80 − 5.54i)14-s + (−1.95 − 1.41i)15-s + (−2.42 − 1.76i)16-s + (0.0530 + 0.163i)17-s + ⋯ |
L(s) = 1 | + (1.38 − 1.00i)2-s + (−1.12 − 0.819i)3-s + (0.591 − 1.82i)4-s + 0.447·5-s − 2.37·6-s + (0.281 − 0.867i)7-s + (−0.482 − 1.48i)8-s + (0.291 + 0.896i)9-s + (0.617 − 0.448i)10-s + (0.488 − 1.50i)11-s + (−2.15 + 1.56i)12-s + (0.410 + 0.298i)13-s + (−0.481 − 1.48i)14-s + (−0.504 − 0.366i)15-s + (−0.606 − 0.440i)16-s + (0.0128 + 0.0395i)17-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(−0.997−0.0753i)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)(−0.997−0.0753i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
−0.997−0.0753i
|
Analytic conductor: |
7.67362 |
Root analytic conductor: |
2.77013 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(388,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :1/2), −0.997−0.0753i)
|
Particular Values
L(1) |
≈ |
0.0965924+2.55851i |
L(21) |
≈ |
0.0965924+2.55851i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+(−1.95+1.41i)T+(0.618−1.90i)T2 |
| 3 | 1+(1.95+1.41i)T+(0.927+2.85i)T2 |
| 5 | 1−T+5T2 |
| 7 | 1+(−0.746+2.29i)T+(−5.66−4.11i)T2 |
| 11 | 1+(−1.62+4.98i)T+(−8.89−6.46i)T2 |
| 13 | 1+(−1.47−1.07i)T+(4.01+12.3i)T2 |
| 17 | 1+(−0.0530−0.163i)T+(−13.7+9.99i)T2 |
| 19 | 1+(1.28−0.932i)T+(5.87−18.0i)T2 |
| 23 | 1+(−1.23−3.80i)T+(−18.6+13.5i)T2 |
| 29 | 1+(0.947−0.688i)T+(8.96−27.5i)T2 |
| 37 | 1+T+37T2 |
| 41 | 1+(7.67−5.57i)T+(12.6−38.9i)T2 |
| 43 | 1+(−7.19+5.23i)T+(13.2−40.8i)T2 |
| 47 | 1+(−1.34−0.973i)T+(14.5+44.6i)T2 |
| 53 | 1+(0.0530+0.163i)T+(−42.8+31.1i)T2 |
| 59 | 1+(−8.14−5.91i)T+(18.2+56.1i)T2 |
| 61 | 1+2.82T+61T2 |
| 67 | 1+5.24T+67T2 |
| 71 | 1+(4.34+13.3i)T+(−57.4+41.7i)T2 |
| 73 | 1+(1.18−3.64i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−4.71−14.4i)T+(−63.9+46.4i)T2 |
| 83 | 1+(−3.29+2.39i)T+(25.6−78.9i)T2 |
| 89 | 1+(−3.85+11.8i)T+(−72.0−52.3i)T2 |
| 97 | 1+(−3.34+10.2i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20886148213416140093231755693, −8.909320678030390988994398726570, −7.59454033866082650085985133396, −6.50714548773836545000629915671, −5.93956030108375784518281806361, −5.31924054139595423858258647140, −4.14788155802545182707558147771, −3.32752993579582653685878773543, −1.76973640119156840354323532387, −0.926999746360359762691088287768,
2.27064705210076804052635103640, 3.83929580130220073589804698168, 4.64563993681762719192716358557, 5.22981707844418219675641441246, 5.95194659688360011055136543293, 6.57845386758434131250692681364, 7.53788282299152384627974133505, 8.719553289317090767563940607211, 9.734478116487142821882073120487, 10.51670613932175216559625908356