L(s) = 1 | + (−0.309 + 0.224i)2-s + (1.85 + 1.34i)3-s + (−0.572 + 1.76i)4-s − 2.23·5-s − 0.874·6-s + (−0.309 + 0.951i)7-s + (−0.454 − 1.40i)8-s + (0.690 + 2.12i)9-s + (0.690 − 0.502i)10-s + (−1.31 + 4.03i)11-s + (−3.43 + 2.49i)12-s + (5.55 + 4.03i)13-s + (−0.118 − 0.363i)14-s + (−4.13 − 3.00i)15-s + (−2.54 − 1.84i)16-s + (−0.166 − 0.513i)17-s + ⋯ |
L(s) = 1 | + (−0.218 + 0.158i)2-s + (1.06 + 0.776i)3-s + (−0.286 + 0.881i)4-s − 0.999·5-s − 0.356·6-s + (−0.116 + 0.359i)7-s + (−0.160 − 0.495i)8-s + (0.230 + 0.708i)9-s + (0.218 − 0.158i)10-s + (−0.395 + 1.21i)11-s + (−0.990 + 0.719i)12-s + (1.54 + 1.11i)13-s + (−0.0315 − 0.0970i)14-s + (−1.06 − 0.776i)15-s + (−0.636 − 0.462i)16-s + (−0.0404 − 0.124i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 + 0.0889i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.996 + 0.0889i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0504910 - 1.13330i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0504910 - 1.13330i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (0.309 - 0.224i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (-1.85 - 1.34i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + 2.23T + 5T^{2} \) |
| 7 | \( 1 + (0.309 - 0.951i)T + (-5.66 - 4.11i)T^{2} \) |
| 11 | \( 1 + (1.31 - 4.03i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (-5.55 - 4.03i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (0.166 + 0.513i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (2.12 + 6.52i)T + (-18.6 + 13.5i)T^{2} \) |
| 29 | \( 1 + (2.99 - 2.17i)T + (8.96 - 27.5i)T^{2} \) |
| 37 | \( 1 + 4.24T + 37T^{2} \) |
| 41 | \( 1 + (6.04 - 4.39i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + (0.166 - 0.121i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (3 + 2.17i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (1.62 + 4.98i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-4.80 - 3.49i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + 4.44T + 61T^{2} \) |
| 67 | \( 1 - 6T + 67T^{2} \) |
| 71 | \( 1 + (-2.30 - 7.10i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (1.31 - 4.03i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-3.43 - 10.5i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.55 + 1.85i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + (-1.81 + 5.57i)T + (-72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (2.16 - 6.65i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16818983922799478845576521975, −9.385652689603866430350590357641, −8.547553691394672277361841467607, −8.363070450120405734665536416138, −7.33858353035506093180951143518, −6.49173487758495986595106999425, −4.71475160994951344202748073129, −4.01164100645533765330520596091, −3.48764152835142104301866320006, −2.26889770184985744718150736994,
0.50238138823720498035102120434, 1.70069504281993286228078324862, 3.22316670130601093682400870099, 3.78523006995041160247245904983, 5.38361719676496592721777031786, 6.16153184137514915843726361027, 7.36398449361435938711918190890, 8.210957972393553052281237864343, 8.451640120865079089093556652711, 9.405051388689390190814140926149