L(s) = 1 | + (−0.309 + 0.224i)2-s + (1.85 + 1.34i)3-s + (−0.572 + 1.76i)4-s − 2.23·5-s − 0.874·6-s + (−0.309 + 0.951i)7-s + (−0.454 − 1.40i)8-s + (0.690 + 2.12i)9-s + (0.690 − 0.502i)10-s + (−1.31 + 4.03i)11-s + (−3.43 + 2.49i)12-s + (5.55 + 4.03i)13-s + (−0.118 − 0.363i)14-s + (−4.13 − 3.00i)15-s + (−2.54 − 1.84i)16-s + (−0.166 − 0.513i)17-s + ⋯ |
L(s) = 1 | + (−0.218 + 0.158i)2-s + (1.06 + 0.776i)3-s + (−0.286 + 0.881i)4-s − 0.999·5-s − 0.356·6-s + (−0.116 + 0.359i)7-s + (−0.160 − 0.495i)8-s + (0.230 + 0.708i)9-s + (0.218 − 0.158i)10-s + (−0.395 + 1.21i)11-s + (−0.990 + 0.719i)12-s + (1.54 + 1.11i)13-s + (−0.0315 − 0.0970i)14-s + (−1.06 − 0.776i)15-s + (−0.636 − 0.462i)16-s + (−0.0404 − 0.124i)17-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(−0.996+0.0889i)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)(−0.996+0.0889i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
−0.996+0.0889i
|
Analytic conductor: |
7.67362 |
Root analytic conductor: |
2.77013 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(388,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :1/2), −0.996+0.0889i)
|
Particular Values
L(1) |
≈ |
0.0504910−1.13330i |
L(21) |
≈ |
0.0504910−1.13330i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+(0.309−0.224i)T+(0.618−1.90i)T2 |
| 3 | 1+(−1.85−1.34i)T+(0.927+2.85i)T2 |
| 5 | 1+2.23T+5T2 |
| 7 | 1+(0.309−0.951i)T+(−5.66−4.11i)T2 |
| 11 | 1+(1.31−4.03i)T+(−8.89−6.46i)T2 |
| 13 | 1+(−5.55−4.03i)T+(4.01+12.3i)T2 |
| 17 | 1+(0.166+0.513i)T+(−13.7+9.99i)T2 |
| 19 | 1+(0.809−0.587i)T+(5.87−18.0i)T2 |
| 23 | 1+(2.12+6.52i)T+(−18.6+13.5i)T2 |
| 29 | 1+(2.99−2.17i)T+(8.96−27.5i)T2 |
| 37 | 1+4.24T+37T2 |
| 41 | 1+(6.04−4.39i)T+(12.6−38.9i)T2 |
| 43 | 1+(0.166−0.121i)T+(13.2−40.8i)T2 |
| 47 | 1+(3+2.17i)T+(14.5+44.6i)T2 |
| 53 | 1+(1.62+4.98i)T+(−42.8+31.1i)T2 |
| 59 | 1+(−4.80−3.49i)T+(18.2+56.1i)T2 |
| 61 | 1+4.44T+61T2 |
| 67 | 1−6T+67T2 |
| 71 | 1+(−2.30−7.10i)T+(−57.4+41.7i)T2 |
| 73 | 1+(1.31−4.03i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−3.43−10.5i)T+(−63.9+46.4i)T2 |
| 83 | 1+(−2.55+1.85i)T+(25.6−78.9i)T2 |
| 89 | 1+(−1.81+5.57i)T+(−72.0−52.3i)T2 |
| 97 | 1+(2.16−6.65i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16818983922799478845576521975, −9.385652689603866430350590357641, −8.547553691394672277361841467607, −8.363070450120405734665536416138, −7.33858353035506093180951143518, −6.49173487758495986595106999425, −4.71475160994951344202748073129, −4.01164100645533765330520596091, −3.48764152835142104301866320006, −2.26889770184985744718150736994,
0.50238138823720498035102120434, 1.70069504281993286228078324862, 3.22316670130601093682400870099, 3.78523006995041160247245904983, 5.38361719676496592721777031786, 6.16153184137514915843726361027, 7.36398449361435938711918190890, 8.210957972393553052281237864343, 8.451640120865079089093556652711, 9.405051388689390190814140926149