L(s) = 1 | + (0.809 − 0.587i)2-s + (2.28 + 1.66i)3-s + (−0.309 + 0.951i)4-s + 2.82·6-s + (1.23 − 3.80i)7-s + (0.927 + 2.85i)8-s + (1.54 + 4.75i)9-s + (−0.874 + 2.68i)11-s + (−2.28 + 1.66i)12-s + (1.14 + 0.831i)13-s + (−1.23 − 3.80i)14-s + (0.809 + 0.587i)16-s + (−0.437 − 1.34i)17-s + (4.04 + 2.93i)18-s + (3.23 − 2.35i)19-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (1.32 + 0.959i)3-s + (−0.154 + 0.475i)4-s + 1.15·6-s + (0.467 − 1.43i)7-s + (0.327 + 1.00i)8-s + (0.515 + 1.58i)9-s + (−0.263 + 0.811i)11-s + (−0.660 + 0.479i)12-s + (0.317 + 0.230i)13-s + (−0.330 − 1.01i)14-s + (0.202 + 0.146i)16-s + (−0.105 − 0.326i)17-s + (0.953 + 0.692i)18-s + (0.742 − 0.539i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.696 - 0.717i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.696 - 0.717i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.06050 + 1.29554i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.06050 + 1.29554i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (-0.809 + 0.587i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (-2.28 - 1.66i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + 5T^{2} \) |
| 7 | \( 1 + (-1.23 + 3.80i)T + (-5.66 - 4.11i)T^{2} \) |
| 11 | \( 1 + (0.874 - 2.68i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (-1.14 - 0.831i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (0.437 + 1.34i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-3.23 + 2.35i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-1.74 - 5.37i)T + (-18.6 + 13.5i)T^{2} \) |
| 29 | \( 1 + (1.14 - 0.831i)T + (8.96 - 27.5i)T^{2} \) |
| 37 | \( 1 - 4.24T + 37T^{2} \) |
| 41 | \( 1 + (-1.61 + 1.17i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + (-6.86 + 4.98i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (9.70 + 7.05i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (1.31 + 4.03i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (6.47 + 4.70i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + 1.41T + 61T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (-2.47 - 7.60i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-1.31 + 4.03i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-3.49 - 10.7i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (11.4 - 8.31i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + (-2.18 + 6.72i)T + (-72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (-2.47 + 7.60i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.973538457741944584899075283971, −9.456542974500367003488807838364, −8.473555284978486689319950831527, −7.65404638109471015533330562658, −7.22689560205712922827832843839, −5.21346479651623890150686004070, −4.42438464802039533043708033997, −3.85189044362347456404444368818, −3.08903106456124521169085803083, −1.89654529688565128923031207327,
1.31113221548804069886282760625, 2.45206236445472566432441286515, 3.38895091248599708654057576514, 4.70459820410866436362668442383, 5.91493333197006132677696812781, 6.20650893802327818171339240025, 7.59356736467406730993444258708, 8.134009340486775372294123363965, 8.957808401426216296612891557754, 9.521362785936465617989696723439