L(s) = 1 | + (0.809 − 0.587i)2-s + (2.28 + 1.66i)3-s + (−0.309 + 0.951i)4-s + 2.82·6-s + (1.23 − 3.80i)7-s + (0.927 + 2.85i)8-s + (1.54 + 4.75i)9-s + (−0.874 + 2.68i)11-s + (−2.28 + 1.66i)12-s + (1.14 + 0.831i)13-s + (−1.23 − 3.80i)14-s + (0.809 + 0.587i)16-s + (−0.437 − 1.34i)17-s + (4.04 + 2.93i)18-s + (3.23 − 2.35i)19-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (1.32 + 0.959i)3-s + (−0.154 + 0.475i)4-s + 1.15·6-s + (0.467 − 1.43i)7-s + (0.327 + 1.00i)8-s + (0.515 + 1.58i)9-s + (−0.263 + 0.811i)11-s + (−0.660 + 0.479i)12-s + (0.317 + 0.230i)13-s + (−0.330 − 1.01i)14-s + (0.202 + 0.146i)16-s + (−0.105 − 0.326i)17-s + (0.953 + 0.692i)18-s + (0.742 − 0.539i)19-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(0.696−0.717i)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)(0.696−0.717i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
0.696−0.717i
|
Analytic conductor: |
7.67362 |
Root analytic conductor: |
2.77013 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(388,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :1/2), 0.696−0.717i)
|
Particular Values
L(1) |
≈ |
3.06050+1.29554i |
L(21) |
≈ |
3.06050+1.29554i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+(−0.809+0.587i)T+(0.618−1.90i)T2 |
| 3 | 1+(−2.28−1.66i)T+(0.927+2.85i)T2 |
| 5 | 1+5T2 |
| 7 | 1+(−1.23+3.80i)T+(−5.66−4.11i)T2 |
| 11 | 1+(0.874−2.68i)T+(−8.89−6.46i)T2 |
| 13 | 1+(−1.14−0.831i)T+(4.01+12.3i)T2 |
| 17 | 1+(0.437+1.34i)T+(−13.7+9.99i)T2 |
| 19 | 1+(−3.23+2.35i)T+(5.87−18.0i)T2 |
| 23 | 1+(−1.74−5.37i)T+(−18.6+13.5i)T2 |
| 29 | 1+(1.14−0.831i)T+(8.96−27.5i)T2 |
| 37 | 1−4.24T+37T2 |
| 41 | 1+(−1.61+1.17i)T+(12.6−38.9i)T2 |
| 43 | 1+(−6.86+4.98i)T+(13.2−40.8i)T2 |
| 47 | 1+(9.70+7.05i)T+(14.5+44.6i)T2 |
| 53 | 1+(1.31+4.03i)T+(−42.8+31.1i)T2 |
| 59 | 1+(6.47+4.70i)T+(18.2+56.1i)T2 |
| 61 | 1+1.41T+61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1+(−2.47−7.60i)T+(−57.4+41.7i)T2 |
| 73 | 1+(−1.31+4.03i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−3.49−10.7i)T+(−63.9+46.4i)T2 |
| 83 | 1+(11.4−8.31i)T+(25.6−78.9i)T2 |
| 89 | 1+(−2.18+6.72i)T+(−72.0−52.3i)T2 |
| 97 | 1+(−2.47+7.60i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.973538457741944584899075283971, −9.456542974500367003488807838364, −8.473555284978486689319950831527, −7.65404638109471015533330562658, −7.22689560205712922827832843839, −5.21346479651623890150686004070, −4.42438464802039533043708033997, −3.85189044362347456404444368818, −3.08903106456124521169085803083, −1.89654529688565128923031207327,
1.31113221548804069886282760625, 2.45206236445472566432441286515, 3.38895091248599708654057576514, 4.70459820410866436362668442383, 5.91493333197006132677696812781, 6.20650893802327818171339240025, 7.59356736467406730993444258708, 8.134009340486775372294123363965, 8.957808401426216296612891557754, 9.521362785936465617989696723439