L(s) = 1 | + (0.391 + 1.20i)2-s + (0.458 − 1.41i)3-s + (0.320 − 0.232i)4-s − 3.80·5-s + 1.88·6-s + (−1.77 + 1.28i)7-s + (2.45 + 1.78i)8-s + (0.644 + 0.468i)9-s + (−1.48 − 4.57i)10-s + (0.769 − 0.558i)11-s + (−0.181 − 0.558i)12-s + (0.0519 − 0.159i)13-s + (−2.24 − 1.62i)14-s + (−1.74 + 5.36i)15-s + (−0.943 + 2.90i)16-s + (5.32 + 3.86i)17-s + ⋯ |
L(s) = 1 | + (0.276 + 0.851i)2-s + (0.264 − 0.815i)3-s + (0.160 − 0.116i)4-s − 1.69·5-s + 0.767·6-s + (−0.669 + 0.486i)7-s + (0.867 + 0.630i)8-s + (0.214 + 0.156i)9-s + (−0.470 − 1.44i)10-s + (0.231 − 0.168i)11-s + (−0.0523 − 0.161i)12-s + (0.0144 − 0.0443i)13-s + (−0.599 − 0.435i)14-s + (−0.450 + 1.38i)15-s + (−0.235 + 0.725i)16-s + (1.29 + 0.937i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.501 - 0.865i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.501 - 0.865i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.46860 + 0.846423i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46860 + 0.846423i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (-0.391 - 1.20i)T + (-1.61 + 1.17i)T^{2} \) |
| 3 | \( 1 + (-0.458 + 1.41i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + 3.80T + 5T^{2} \) |
| 7 | \( 1 + (1.77 - 1.28i)T + (2.16 - 6.65i)T^{2} \) |
| 11 | \( 1 + (-0.769 + 0.558i)T + (3.39 - 10.4i)T^{2} \) |
| 13 | \( 1 + (-0.0519 + 0.159i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-5.32 - 3.86i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (0.356 + 1.09i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (-3.74 - 2.72i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (-0.413 - 1.27i)T + (-23.4 + 17.0i)T^{2} \) |
| 37 | \( 1 + 3.87T + 37T^{2} \) |
| 41 | \( 1 + (-0.101 - 0.312i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + (-2.97 - 9.15i)T + (-34.7 + 25.2i)T^{2} \) |
| 47 | \( 1 + (-1.74 + 5.36i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.93 - 4.31i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (0.819 - 2.52i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + 1.74T + 61T^{2} \) |
| 67 | \( 1 - 0.552T + 67T^{2} \) |
| 71 | \( 1 + (0.919 + 0.668i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-6.40 + 4.65i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (3.67 + 2.66i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.100 - 0.310i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (-11.9 + 8.64i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (12.5 - 9.12i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28283359697501905323184405398, −8.929136133135624405578863712825, −8.043274896546945712986944866052, −7.59795075587895492911180740981, −6.92113837144512785180013713152, −6.12511618370272725087871101062, −5.05653892291422283628166090283, −3.93950194209180992917566330743, −2.89582085733345213315121162548, −1.27749348790612967915597221255,
0.835431649903740984266659843376, 2.89688837546857195956555442661, 3.63802890890178464906632472779, 4.04322115518178739833087516718, 4.99481261369495254096339867018, 6.86845495317616279333615345225, 7.27753758383668985290126306329, 8.224647989473540982031524574620, 9.305778002964025298047167691104, 10.11720112452119281228754758209