L(s) = 1 | + (−1.30 − 0.951i)2-s + (−2.95 − 1.31i)3-s + (0.190 + 0.587i)4-s + (−0.5 + 0.866i)5-s + (2.61 + 4.53i)6-s + (0.157 − 0.175i)7-s + (−0.690 + 2.12i)8-s + (4.99 + 5.55i)9-s + (1.47 − 0.658i)10-s + (−1.95 − 0.415i)11-s + (0.209 − 1.98i)12-s + (0.338 + 3.21i)13-s + (−0.373 + 0.0794i)14-s + (2.61 − 1.90i)15-s + (3.92 − 2.85i)16-s + (−0.747 + 0.158i)17-s + ⋯ |
L(s) = 1 | + (−0.925 − 0.672i)2-s + (−1.70 − 0.759i)3-s + (0.0954 + 0.293i)4-s + (−0.223 + 0.387i)5-s + (1.06 + 1.85i)6-s + (0.0597 − 0.0663i)7-s + (−0.244 + 0.751i)8-s + (1.66 + 1.85i)9-s + (0.467 − 0.208i)10-s + (−0.589 − 0.125i)11-s + (0.0603 − 0.574i)12-s + (0.0938 + 0.892i)13-s + (−0.0998 + 0.0212i)14-s + (0.675 − 0.491i)15-s + (0.981 − 0.713i)16-s + (−0.181 + 0.0385i)17-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(−0.999−0.00444i)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)(−0.999−0.00444i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
−0.999−0.00444i
|
Analytic conductor: |
7.67362 |
Root analytic conductor: |
2.77013 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(732,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :1/2), −0.999−0.00444i)
|
Particular Values
L(1) |
≈ |
0.000462493+0.208206i |
L(21) |
≈ |
0.000462493+0.208206i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+(1.30+0.951i)T+(0.618+1.90i)T2 |
| 3 | 1+(2.95+1.31i)T+(2.00+2.22i)T2 |
| 5 | 1+(0.5−0.866i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−0.157+0.175i)T+(−0.731−6.96i)T2 |
| 11 | 1+(1.95+0.415i)T+(10.0+4.47i)T2 |
| 13 | 1+(−0.338−3.21i)T+(−12.7+2.70i)T2 |
| 17 | 1+(0.747−0.158i)T+(15.5−6.91i)T2 |
| 19 | 1+(−0.233+2.22i)T+(−18.5−3.95i)T2 |
| 23 | 1+(−1.76+5.42i)T+(−18.6−13.5i)T2 |
| 29 | 1+(2.23+1.62i)T+(8.96+27.5i)T2 |
| 37 | 1+(−1−1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−6.39+2.84i)T+(27.4−30.4i)T2 |
| 43 | 1+(0.129−1.22i)T+(−42.0−8.94i)T2 |
| 47 | 1+(2−1.45i)T+(14.5−44.6i)T2 |
| 53 | 1+(7.00+7.78i)T+(−5.54+52.7i)T2 |
| 59 | 1+(−2.04−0.909i)T+(39.4+43.8i)T2 |
| 61 | 1−8.18T+61T2 |
| 67 | 1+(4−6.92i)T+(−33.5−58.0i)T2 |
| 71 | 1+(6.14+6.82i)T+(−7.42+70.6i)T2 |
| 73 | 1+(8.28+1.76i)T+(66.6+29.6i)T2 |
| 79 | 1+(−11.4+2.43i)T+(72.1−32.1i)T2 |
| 83 | 1+(13.6−6.07i)T+(55.5−61.6i)T2 |
| 89 | 1+(−3.61−11.1i)T+(−72.0+52.3i)T2 |
| 97 | 1+(4.92+15.1i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.913737553296989845008047448902, −8.912476505579886803445758920083, −7.84733721006105728717279447341, −7.05574185086875396355502102351, −6.27260602718360331329765466662, −5.36238127818924991538182404450, −4.49684487333086695161552711886, −2.58292996710064620528850832071, −1.43357197271161183365410659094, −0.23567692889004931292023260099,
0.938791577748437918209742390881, 3.49471874149431193227568583481, 4.55066861970383148489962242127, 5.46652886372924600501066242669, 6.08700178299702460366128814983, 7.10492888017794513395171620279, 7.85648123916705843052285899481, 8.860907903832274713085315712290, 9.720557659277721424725403276313, 10.30108373006669157371349266687