L(s) = 1 | + (−1.30 + 0.951i)2-s + (2.95 − 1.31i)3-s + (0.190 − 0.587i)4-s + (−0.5 − 0.866i)5-s + (−2.61 + 4.53i)6-s + (0.157 + 0.175i)7-s + (−0.690 − 2.12i)8-s + (4.99 − 5.55i)9-s + (1.47 + 0.658i)10-s + (1.95 − 0.415i)11-s + (−0.209 − 1.98i)12-s + (−0.338 + 3.21i)13-s + (−0.373 − 0.0794i)14-s + (−2.61 − 1.90i)15-s + (3.92 + 2.85i)16-s + (0.747 + 0.158i)17-s + ⋯ |
L(s) = 1 | + (−0.925 + 0.672i)2-s + (1.70 − 0.759i)3-s + (0.0954 − 0.293i)4-s + (−0.223 − 0.387i)5-s + (−1.06 + 1.85i)6-s + (0.0597 + 0.0663i)7-s + (−0.244 − 0.751i)8-s + (1.66 − 1.85i)9-s + (0.467 + 0.208i)10-s + (0.589 − 0.125i)11-s + (−0.0603 − 0.574i)12-s + (−0.0938 + 0.892i)13-s + (−0.0998 − 0.0212i)14-s + (−0.675 − 0.491i)15-s + (0.981 + 0.713i)16-s + (0.181 + 0.0385i)17-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(0.949+0.314i)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)(0.949+0.314i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
0.949+0.314i
|
Analytic conductor: |
7.67362 |
Root analytic conductor: |
2.77013 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(235,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :1/2), 0.949+0.314i)
|
Particular Values
L(1) |
≈ |
1.70496−0.275511i |
L(21) |
≈ |
1.70496−0.275511i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+(1.30−0.951i)T+(0.618−1.90i)T2 |
| 3 | 1+(−2.95+1.31i)T+(2.00−2.22i)T2 |
| 5 | 1+(0.5+0.866i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−0.157−0.175i)T+(−0.731+6.96i)T2 |
| 11 | 1+(−1.95+0.415i)T+(10.0−4.47i)T2 |
| 13 | 1+(0.338−3.21i)T+(−12.7−2.70i)T2 |
| 17 | 1+(−0.747−0.158i)T+(15.5+6.91i)T2 |
| 19 | 1+(−0.233−2.22i)T+(−18.5+3.95i)T2 |
| 23 | 1+(1.76+5.42i)T+(−18.6+13.5i)T2 |
| 29 | 1+(−2.23+1.62i)T+(8.96−27.5i)T2 |
| 37 | 1+(1−1.73i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−6.39−2.84i)T+(27.4+30.4i)T2 |
| 43 | 1+(−0.129−1.22i)T+(−42.0+8.94i)T2 |
| 47 | 1+(2+1.45i)T+(14.5+44.6i)T2 |
| 53 | 1+(−7.00+7.78i)T+(−5.54−52.7i)T2 |
| 59 | 1+(−2.04+0.909i)T+(39.4−43.8i)T2 |
| 61 | 1+8.18T+61T2 |
| 67 | 1+(4+6.92i)T+(−33.5+58.0i)T2 |
| 71 | 1+(6.14−6.82i)T+(−7.42−70.6i)T2 |
| 73 | 1+(−8.28+1.76i)T+(66.6−29.6i)T2 |
| 79 | 1+(11.4+2.43i)T+(72.1+32.1i)T2 |
| 83 | 1+(−13.6−6.07i)T+(55.5+61.6i)T2 |
| 89 | 1+(3.61−11.1i)T+(−72.0−52.3i)T2 |
| 97 | 1+(4.92−15.1i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.484813365600693533121657082539, −8.860709610671396030333403916115, −8.319886547756006381700471053969, −7.80143734952898177262368619920, −6.84453833934405824115446081525, −6.36642021827019285491018423839, −4.35652633187241642517758580828, −3.56023356987468585740590288174, −2.29607635489839945317745321525, −1.02874398411419716296613537054,
1.47557155684217227106171692713, 2.69264545887661440283173261105, 3.31145309853263925104729576062, 4.39582506513835105745450693415, 5.58083511073306263934370106308, 7.33324318063674385476533728681, 7.80263293308365736895663484499, 8.809636851381838742343708043772, 9.179168606874644148307493889177, 9.946329193947377067355622730604