L(s) = 1 | + (0.5 + 1.53i)2-s + (−3.16 + 0.672i)3-s + (−0.5 + 0.363i)4-s + (−0.5 + 0.866i)5-s + (−2.61 − 4.53i)6-s + (0.215 + 0.0960i)7-s + (1.80 + 1.31i)8-s + (6.82 − 3.03i)9-s + (−1.58 − 0.336i)10-s + (0.209 + 1.98i)11-s + (1.33 − 1.48i)12-s + (2.16 + 2.40i)13-s + (−0.0399 + 0.379i)14-s + (1 − 3.07i)15-s + (−1.50 + 4.61i)16-s + (0.0798 − 0.759i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 1.08i)2-s + (−1.82 + 0.388i)3-s + (−0.250 + 0.181i)4-s + (−0.223 + 0.387i)5-s + (−1.06 − 1.85i)6-s + (0.0815 + 0.0362i)7-s + (0.639 + 0.464i)8-s + (2.27 − 1.01i)9-s + (−0.500 − 0.106i)10-s + (0.0630 + 0.599i)11-s + (0.386 − 0.429i)12-s + (0.600 + 0.666i)13-s + (−0.0106 + 0.101i)14-s + (0.258 − 0.794i)15-s + (−0.375 + 1.15i)16-s + (0.0193 − 0.184i)17-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(−0.976+0.213i)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)(−0.976+0.213i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
−0.976+0.213i
|
Analytic conductor: |
7.67362 |
Root analytic conductor: |
2.77013 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(844,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :1/2), −0.976+0.213i)
|
Particular Values
L(1) |
≈ |
0.105237−0.973759i |
L(21) |
≈ |
0.105237−0.973759i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+(−0.5−1.53i)T+(−1.61+1.17i)T2 |
| 3 | 1+(3.16−0.672i)T+(2.74−1.22i)T2 |
| 5 | 1+(0.5−0.866i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−0.215−0.0960i)T+(4.68+5.20i)T2 |
| 11 | 1+(−0.209−1.98i)T+(−10.7+2.28i)T2 |
| 13 | 1+(−2.16−2.40i)T+(−1.35+12.9i)T2 |
| 17 | 1+(−0.0798+0.759i)T+(−16.6−3.53i)T2 |
| 19 | 1+(1.49−1.66i)T+(−1.98−18.8i)T2 |
| 23 | 1+(−4.61−3.35i)T+(7.10+21.8i)T2 |
| 29 | 1+(0.854+2.62i)T+(−23.4+17.0i)T2 |
| 37 | 1+(1+1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1+(6.84+1.45i)T+(37.4+16.6i)T2 |
| 43 | 1+(0.827−0.918i)T+(−4.49−42.7i)T2 |
| 47 | 1+(−0.763+2.35i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−9.56+4.25i)T+(35.4−39.3i)T2 |
| 59 | 1+(2.18−0.464i)T+(53.8−23.9i)T2 |
| 61 | 1+8.18T+61T2 |
| 67 | 1+(4−6.92i)T+(−33.5−58.0i)T2 |
| 71 | 1+(8.38−3.73i)T+(47.5−52.7i)T2 |
| 73 | 1+(−0.885−8.42i)T+(−71.4+15.1i)T2 |
| 79 | 1+(1.22−11.6i)T+(−77.2−16.4i)T2 |
| 83 | 1+(14.6+3.10i)T+(75.8+33.7i)T2 |
| 89 | 1+(−9.47+6.88i)T+(27.5−84.6i)T2 |
| 97 | 1+(−12.8+9.37i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.59215839523724529612017315659, −9.891661296549121398032222949144, −8.710563897516164088892071144164, −7.27516145714776935385383764415, −6.97874620203888313906928629832, −6.14200069447733079832408734410, −5.42326047624162397477317526747, −4.72042028204797129317005884926, −3.83449799193111635304736941703, −1.54690774430578196714892649507,
0.56906579653739646137767397002, 1.50705092370514977211226580736, 3.10556657297953477120340437343, 4.39448573548930614357429059339, 4.99409119905619728978412472071, 6.04593272225681182463781859014, 6.78329304887953857193893509408, 7.73811689747419667447122409016, 8.874918039595230097936793655513, 10.27136277838794688899868199713