L(s) = 1 | + (0.5 + 0.363i)2-s + (1.12 + 0.502i)3-s + (−0.5 − 1.53i)4-s + (−0.5 + 0.866i)5-s + (0.381 + 0.661i)6-s + (−2.83 + 3.14i)7-s + (0.690 − 2.12i)8-s + (−0.985 − 1.09i)9-s + (−0.564 + 0.251i)10-s + (−1.95 − 0.415i)11-s + (0.209 − 1.98i)12-s + (−0.129 − 1.22i)13-s + (−2.56 + 0.544i)14-s + (−1 + 0.726i)15-s + (−1.49 + 1.08i)16-s + (−5.12 + 1.08i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.256i)2-s + (0.651 + 0.290i)3-s + (−0.250 − 0.769i)4-s + (−0.223 + 0.387i)5-s + (0.155 + 0.270i)6-s + (−1.07 + 1.18i)7-s + (0.244 − 0.751i)8-s + (−0.328 − 0.364i)9-s + (−0.178 + 0.0794i)10-s + (−0.589 − 0.125i)11-s + (0.0603 − 0.574i)12-s + (−0.0358 − 0.340i)13-s + (−0.684 + 0.145i)14-s + (−0.258 + 0.187i)15-s + (−0.374 + 0.272i)16-s + (−1.24 + 0.264i)17-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(−0.999−0.00444i)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)(−0.999−0.00444i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
−0.999−0.00444i
|
Analytic conductor: |
7.67362 |
Root analytic conductor: |
2.77013 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(732,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :1/2), −0.999−0.00444i)
|
Particular Values
L(1) |
≈ |
0.000743602+0.334756i |
L(21) |
≈ |
0.000743602+0.334756i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+(−0.5−0.363i)T+(0.618+1.90i)T2 |
| 3 | 1+(−1.12−0.502i)T+(2.00+2.22i)T2 |
| 5 | 1+(0.5−0.866i)T+(−2.5−4.33i)T2 |
| 7 | 1+(2.83−3.14i)T+(−0.731−6.96i)T2 |
| 11 | 1+(1.95+0.415i)T+(10.0+4.47i)T2 |
| 13 | 1+(0.129+1.22i)T+(−12.7+2.70i)T2 |
| 17 | 1+(5.12−1.08i)T+(15.5−6.91i)T2 |
| 19 | 1+(0.233−2.22i)T+(−18.5−3.95i)T2 |
| 23 | 1+(2.38−7.33i)T+(−18.6−13.5i)T2 |
| 29 | 1+(5.85+4.25i)T+(8.96+27.5i)T2 |
| 37 | 1+(−1−1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−6.39+2.84i)T+(27.4−30.4i)T2 |
| 43 | 1+(−0.338+3.21i)T+(−42.0−8.94i)T2 |
| 47 | 1+(−5.23+3.80i)T+(14.5−44.6i)T2 |
| 53 | 1+(1.02+1.13i)T+(−5.54+52.7i)T2 |
| 59 | 1+(2.04+0.909i)T+(39.4+43.8i)T2 |
| 61 | 1+14.1T+61T2 |
| 67 | 1+(4−6.92i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−8.81−9.79i)T+(−7.42+70.6i)T2 |
| 73 | 1+(−0.461−0.0981i)T+(66.6+29.6i)T2 |
| 79 | 1+(1.67−0.355i)T+(72.1−32.1i)T2 |
| 83 | 1+(−2.68+1.19i)T+(55.5−61.6i)T2 |
| 89 | 1+(0.527+1.62i)T+(−72.0+52.3i)T2 |
| 97 | 1+(−0.600−1.84i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.26111021170137716719032812554, −9.310533564003306302283539267935, −9.168857453122780922389296356695, −8.004903380452685033283792271011, −6.88926599773031379321226716185, −5.87697502562249231931092221967, −5.59002823063009185678774977503, −4.08164493817898073026091465308, −3.24925498478259712805312822736, −2.21704725252552378320276771094,
0.11607423535526923119251637674, 2.33551682088031588461351314441, 3.10166109113870133955242627124, 4.20789034638780961464360002948, 4.75628134886213653314342625747, 6.35403752075445097354471516333, 7.28617286394662353249338386328, 7.87490988847403258260340992007, 8.792890192688992885925462769972, 9.351707584676160220520123063617