Properties

Label 2-9610-1.1-c1-0-143
Degree $2$
Conductor $9610$
Sign $1$
Analytic cond. $76.7362$
Root an. cond. $8.75992$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 1.70·3-s + 4-s + 5-s + 1.70·6-s + 1.07·7-s + 8-s − 0.0783·9-s + 10-s − 6.04·11-s + 1.70·12-s + 0.290·13-s + 1.07·14-s + 1.70·15-s + 16-s − 1.07·17-s − 0.0783·18-s + 5.26·19-s + 20-s + 1.84·21-s − 6.04·22-s + 4.34·23-s + 1.70·24-s + 25-s + 0.290·26-s − 5.26·27-s + 1.07·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.986·3-s + 0.5·4-s + 0.447·5-s + 0.697·6-s + 0.407·7-s + 0.353·8-s − 0.0261·9-s + 0.316·10-s − 1.82·11-s + 0.493·12-s + 0.0806·13-s + 0.288·14-s + 0.441·15-s + 0.250·16-s − 0.261·17-s − 0.0184·18-s + 1.20·19-s + 0.223·20-s + 0.402·21-s − 1.28·22-s + 0.904·23-s + 0.348·24-s + 0.200·25-s + 0.0570·26-s − 1.01·27-s + 0.203·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9610\)    =    \(2 \cdot 5 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(76.7362\)
Root analytic conductor: \(8.75992\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9610,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.290800256\)
\(L(\frac12)\) \(\approx\) \(5.290800256\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
31 \( 1 \)
good3 \( 1 - 1.70T + 3T^{2} \)
7 \( 1 - 1.07T + 7T^{2} \)
11 \( 1 + 6.04T + 11T^{2} \)
13 \( 1 - 0.290T + 13T^{2} \)
17 \( 1 + 1.07T + 17T^{2} \)
19 \( 1 - 5.26T + 19T^{2} \)
23 \( 1 - 4.34T + 23T^{2} \)
29 \( 1 - 9.31T + 29T^{2} \)
37 \( 1 - 2.44T + 37T^{2} \)
41 \( 1 - 5.60T + 41T^{2} \)
43 \( 1 - 7.86T + 43T^{2} \)
47 \( 1 + 1.75T + 47T^{2} \)
53 \( 1 - 6.44T + 53T^{2} \)
59 \( 1 - 11.4T + 59T^{2} \)
61 \( 1 - 12.0T + 61T^{2} \)
67 \( 1 + 13.9T + 67T^{2} \)
71 \( 1 + 4.68T + 71T^{2} \)
73 \( 1 - 8.18T + 73T^{2} \)
79 \( 1 + 14.2T + 79T^{2} \)
83 \( 1 + 3.55T + 83T^{2} \)
89 \( 1 + 3.84T + 89T^{2} \)
97 \( 1 - 2.49T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55580880758408573045834275158, −7.24950828421604510716571244370, −6.15761360485456725699572804419, −5.46952537736907706346903709957, −5.00128957774152633481394473721, −4.22329245395159891974297754349, −3.12784559907594897283994556138, −2.75640274635620554704189251811, −2.17434319735332508259951121257, −0.939655340382282966799395232452, 0.939655340382282966799395232452, 2.17434319735332508259951121257, 2.75640274635620554704189251811, 3.12784559907594897283994556138, 4.22329245395159891974297754349, 5.00128957774152633481394473721, 5.46952537736907706346903709957, 6.15761360485456725699572804419, 7.24950828421604510716571244370, 7.55580880758408573045834275158

Graph of the $Z$-function along the critical line