L(s) = 1 | + (0.468 + 1.33i)2-s + (0.127 − 0.393i)3-s + (−1.56 + 1.25i)4-s + (1.55 + 2.14i)5-s + (0.585 − 0.0138i)6-s + (1.01 + 3.12i)7-s + (−2.40 − 1.49i)8-s + (2.28 + 1.66i)9-s + (−2.12 + 3.07i)10-s + (0.292 + 0.774i)12-s + (1.10 + 0.801i)13-s + (−3.69 + 2.82i)14-s + (1.04 − 0.338i)15-s + (0.871 − 3.90i)16-s + (−3.22 − 4.44i)17-s + (−1.14 + 3.83i)18-s + ⋯ |
L(s) = 1 | + (0.331 + 0.943i)2-s + (0.0739 − 0.227i)3-s + (−0.780 + 0.625i)4-s + (0.695 + 0.957i)5-s + (0.239 − 0.00564i)6-s + (0.384 + 1.18i)7-s + (−0.848 − 0.529i)8-s + (0.762 + 0.554i)9-s + (−0.672 + 0.973i)10-s + (0.0845 + 0.223i)12-s + (0.305 + 0.222i)13-s + (−0.988 + 0.754i)14-s + (0.269 − 0.0874i)15-s + (0.217 − 0.975i)16-s + (−0.782 − 1.07i)17-s + (−0.270 + 0.903i)18-s + ⋯ |
Λ(s)=(=(968s/2ΓC(s)L(s)(−0.860−0.508i)Λ(2−s)
Λ(s)=(=(968s/2ΓC(s+1/2)L(s)(−0.860−0.508i)Λ(1−s)
Degree: |
2 |
Conductor: |
968
= 23⋅112
|
Sign: |
−0.860−0.508i
|
Analytic conductor: |
7.72951 |
Root analytic conductor: |
2.78020 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ968(403,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 968, ( :1/2), −0.860−0.508i)
|
Particular Values
L(1) |
≈ |
0.549030+2.00825i |
L(21) |
≈ |
0.549030+2.00825i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.468−1.33i)T |
| 11 | 1 |
good | 3 | 1+(−0.127+0.393i)T+(−2.42−1.76i)T2 |
| 5 | 1+(−1.55−2.14i)T+(−1.54+4.75i)T2 |
| 7 | 1+(−1.01−3.12i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−1.10−0.801i)T+(4.01+12.3i)T2 |
| 17 | 1+(3.22+4.44i)T+(−5.25+16.1i)T2 |
| 19 | 1+(−2.16−0.702i)T+(15.3+11.1i)T2 |
| 23 | 1−6.38iT−23T2 |
| 29 | 1+(2.03+6.25i)T+(−23.4+17.0i)T2 |
| 31 | 1+(−0.644+0.886i)T+(−9.57−29.4i)T2 |
| 37 | 1+(−4.60+1.49i)T+(29.9−21.7i)T2 |
| 41 | 1+(9.54+3.10i)T+(33.1+24.0i)T2 |
| 43 | 1−6.43iT−43T2 |
| 47 | 1+(38.0+27.6i)T2 |
| 53 | 1+(−4.39+6.05i)T+(−16.3−50.4i)T2 |
| 59 | 1+(−1.00−3.08i)T+(−47.7+34.6i)T2 |
| 61 | 1+(5.32−3.86i)T+(18.8−58.0i)T2 |
| 67 | 1+6.07T+67T2 |
| 71 | 1+(−3.75−5.16i)T+(−21.9+67.5i)T2 |
| 73 | 1+(0.895−0.291i)T+(59.0−42.9i)T2 |
| 79 | 1+(7.52+5.47i)T+(24.4+75.1i)T2 |
| 83 | 1+(2.67+3.67i)T+(−25.6+78.9i)T2 |
| 89 | 1+10.6T+89T2 |
| 97 | 1+(6.05+4.39i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06043375835499979002665864041, −9.451817193616802518202809020990, −8.579134900816126194042827497066, −7.60402579831793708834126097098, −6.98188034818580229595493203460, −6.07237512723853996052702417139, −5.40154584210946109070757557201, −4.41222160833041869775310407468, −3.01269589983836362839155111145, −2.02607594377501071671567066404,
0.935901505132151969578071689686, 1.76866704490821651382637371663, 3.41644320479774307748960358099, 4.34588218820055001092987294609, 4.87134089549927908463931542257, 6.02256470789207770226432167345, 7.03078242759784812872314537135, 8.421202244920402366460799809331, 8.977156602540985906685611222784, 9.904723093603391400765959769864