L(s) = 1 | + (−1.37 − 0.330i)2-s + (−1.38 + 1.90i)3-s + (1.78 + 0.908i)4-s + (3.96 + 1.28i)5-s + (2.53 − 2.16i)6-s + (0.754 − 0.548i)7-s + (−2.14 − 1.83i)8-s + (−0.783 − 2.41i)9-s + (−5.02 − 3.08i)10-s + (−4.19 + 2.13i)12-s + (−2.78 + 0.906i)13-s + (−1.21 + 0.504i)14-s + (−7.93 + 5.76i)15-s + (2.34 + 3.23i)16-s + (−0.755 + 2.32i)17-s + (0.280 + 3.57i)18-s + ⋯ |
L(s) = 1 | + (−0.972 − 0.233i)2-s + (−0.798 + 1.09i)3-s + (0.890 + 0.454i)4-s + (1.77 + 0.575i)5-s + (1.03 − 0.882i)6-s + (0.285 − 0.207i)7-s + (−0.760 − 0.649i)8-s + (−0.261 − 0.804i)9-s + (−1.58 − 0.974i)10-s + (−1.21 + 0.616i)12-s + (−0.773 + 0.251i)13-s + (−0.325 + 0.134i)14-s + (−2.04 + 1.48i)15-s + (0.587 + 0.809i)16-s + (−0.183 + 0.564i)17-s + (0.0662 + 0.842i)18-s + ⋯ |
Λ(s)=(=(968s/2ΓC(s)L(s)(−0.662−0.748i)Λ(2−s)
Λ(s)=(=(968s/2ΓC(s+1/2)L(s)(−0.662−0.748i)Λ(1−s)
Degree: |
2 |
Conductor: |
968
= 23⋅112
|
Sign: |
−0.662−0.748i
|
Analytic conductor: |
7.72951 |
Root analytic conductor: |
2.78020 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ968(269,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 968, ( :1/2), −0.662−0.748i)
|
Particular Values
L(1) |
≈ |
0.366929+0.814693i |
L(21) |
≈ |
0.366929+0.814693i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.37+0.330i)T |
| 11 | 1 |
good | 3 | 1+(1.38−1.90i)T+(−0.927−2.85i)T2 |
| 5 | 1+(−3.96−1.28i)T+(4.04+2.93i)T2 |
| 7 | 1+(−0.754+0.548i)T+(2.16−6.65i)T2 |
| 13 | 1+(2.78−0.906i)T+(10.5−7.64i)T2 |
| 17 | 1+(0.755−2.32i)T+(−13.7−9.99i)T2 |
| 19 | 1+(1.57−2.17i)T+(−5.87−18.0i)T2 |
| 23 | 1+3.47T+23T2 |
| 29 | 1+(−2.68−3.69i)T+(−8.96+27.5i)T2 |
| 31 | 1+(1.13+3.47i)T+(−25.0+18.2i)T2 |
| 37 | 1+(2.66+3.67i)T+(−11.4+35.1i)T2 |
| 41 | 1+(−3.33−2.42i)T+(12.6+38.9i)T2 |
| 43 | 1−11.4iT−43T2 |
| 47 | 1+(2.63+1.91i)T+(14.5+44.6i)T2 |
| 53 | 1+(−0.618+0.200i)T+(42.8−31.1i)T2 |
| 59 | 1+(−1.71−2.35i)T+(−18.2+56.1i)T2 |
| 61 | 1+(−10.1−3.30i)T+(49.3+35.8i)T2 |
| 67 | 1−5.42iT−67T2 |
| 71 | 1+(2.39−7.37i)T+(−57.4−41.7i)T2 |
| 73 | 1+(−10.5+7.67i)T+(22.5−69.4i)T2 |
| 79 | 1+(1.49+4.59i)T+(−63.9+46.4i)T2 |
| 83 | 1+(−0.627−0.203i)T+(67.1+48.7i)T2 |
| 89 | 1+2.74T+89T2 |
| 97 | 1+(−0.565−1.73i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23438606963461819028910535901, −9.736100494194554112321466450484, −9.138571474291314892768834607907, −7.942534261942813513032110191726, −6.76259946632224050024683797899, −6.07847044462710051436657670791, −5.31821276708793236830928731463, −4.10338967374603196717284378020, −2.66691184109772253213629045299, −1.65838537086886284476731634679,
0.60587465532577180464264649341, 1.80489541957878857989656709850, 2.42027240981208179538632994679, 5.10353185286490930407267202134, 5.56611188586946606605557288196, 6.49540522480057590015493208788, 6.94825209869219444028688881936, 8.075725912576276023729882743552, 8.911473755775123205084694115086, 9.713529189513693998679251657585