L(s) = 1 | + (0.301 + 1.38i)2-s + (1.50 − 2.06i)3-s + (−1.81 + 0.832i)4-s + (2.56 + 0.832i)5-s + (3.30 + 1.45i)6-s + (3.19 − 2.32i)7-s + (−1.69 − 2.26i)8-s + (−1.08 − 3.35i)9-s + (−0.379 + 3.79i)10-s + (−1.01 + 5.00i)12-s + (−0.416 + 0.135i)13-s + (4.16 + 3.71i)14-s + (5.57 − 4.04i)15-s + (2.61 − 3.02i)16-s + (0.739 − 2.27i)17-s + (4.30 − 2.51i)18-s + ⋯ |
L(s) = 1 | + (0.212 + 0.977i)2-s + (0.867 − 1.19i)3-s + (−0.909 + 0.416i)4-s + (1.14 + 0.372i)5-s + (1.35 + 0.593i)6-s + (1.20 − 0.877i)7-s + (−0.600 − 0.799i)8-s + (−0.363 − 1.11i)9-s + (−0.119 + 1.19i)10-s + (−0.291 + 1.44i)12-s + (−0.115 + 0.0375i)13-s + (1.11 + 0.993i)14-s + (1.43 − 1.04i)15-s + (0.653 − 0.756i)16-s + (0.179 − 0.552i)17-s + (1.01 − 0.593i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0373i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0373i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.83158 + 0.0528372i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.83158 + 0.0528372i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.301 - 1.38i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (-1.50 + 2.06i)T + (-0.927 - 2.85i)T^{2} \) |
| 5 | \( 1 + (-2.56 - 0.832i)T + (4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-3.19 + 2.32i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (0.416 - 0.135i)T + (10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-0.739 + 2.27i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (3.14 - 4.32i)T + (-5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 1.35T + 23T^{2} \) |
| 29 | \( 1 + (-0.0866 - 0.119i)T + (-8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.489 - 1.50i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (4.33 + 5.97i)T + (-11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (2.92 + 2.12i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 6.62iT - 43T^{2} \) |
| 47 | \( 1 + (2.44 + 1.77i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (4.41 - 1.43i)T + (42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-7.35 - 10.1i)T + (-18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-0.627 - 0.203i)T + (49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 - 3.00iT - 67T^{2} \) |
| 71 | \( 1 + (3.26 - 10.0i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-8.61 + 6.25i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-1.99 - 6.13i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (2.17 + 0.705i)T + (67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 11.5T + 89T^{2} \) |
| 97 | \( 1 + (-2.68 - 8.25i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.835813786920975478722577558203, −8.805469408912798664704181928111, −8.105604427372673008460351592572, −7.47357594477401157595230180057, −6.80719339899136729432813943992, −5.96416676849488658275637841703, −4.95819643291526828801356298986, −3.76817065838731964426169287029, −2.37604113480691310551152175981, −1.33626667343194804875101508290,
1.77231736825601048729061575442, 2.45026527461609864847138821998, 3.61164056641655881460520104704, 4.80760385299111195004796608425, 5.08154139300808654959361103798, 6.18319005284047350046280643296, 8.189428021541295488657516650099, 8.667376364818201047649156471127, 9.313046987954428372891966490218, 9.959403676084569457304383592453