L(s) = 1 | + (0.301 + 1.38i)2-s + (1.50 − 2.06i)3-s + (−1.81 + 0.832i)4-s + (2.56 + 0.832i)5-s + (3.30 + 1.45i)6-s + (3.19 − 2.32i)7-s + (−1.69 − 2.26i)8-s + (−1.08 − 3.35i)9-s + (−0.379 + 3.79i)10-s + (−1.01 + 5.00i)12-s + (−0.416 + 0.135i)13-s + (4.16 + 3.71i)14-s + (5.57 − 4.04i)15-s + (2.61 − 3.02i)16-s + (0.739 − 2.27i)17-s + (4.30 − 2.51i)18-s + ⋯ |
L(s) = 1 | + (0.212 + 0.977i)2-s + (0.867 − 1.19i)3-s + (−0.909 + 0.416i)4-s + (1.14 + 0.372i)5-s + (1.35 + 0.593i)6-s + (1.20 − 0.877i)7-s + (−0.600 − 0.799i)8-s + (−0.363 − 1.11i)9-s + (−0.119 + 1.19i)10-s + (−0.291 + 1.44i)12-s + (−0.115 + 0.0375i)13-s + (1.11 + 0.993i)14-s + (1.43 − 1.04i)15-s + (0.653 − 0.756i)16-s + (0.179 − 0.552i)17-s + (1.01 − 0.593i)18-s + ⋯ |
Λ(s)=(=(968s/2ΓC(s)L(s)(0.999−0.0373i)Λ(2−s)
Λ(s)=(=(968s/2ΓC(s+1/2)L(s)(0.999−0.0373i)Λ(1−s)
Degree: |
2 |
Conductor: |
968
= 23⋅112
|
Sign: |
0.999−0.0373i
|
Analytic conductor: |
7.72951 |
Root analytic conductor: |
2.78020 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ968(269,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 968, ( :1/2), 0.999−0.0373i)
|
Particular Values
L(1) |
≈ |
2.83158+0.0528372i |
L(21) |
≈ |
2.83158+0.0528372i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.301−1.38i)T |
| 11 | 1 |
good | 3 | 1+(−1.50+2.06i)T+(−0.927−2.85i)T2 |
| 5 | 1+(−2.56−0.832i)T+(4.04+2.93i)T2 |
| 7 | 1+(−3.19+2.32i)T+(2.16−6.65i)T2 |
| 13 | 1+(0.416−0.135i)T+(10.5−7.64i)T2 |
| 17 | 1+(−0.739+2.27i)T+(−13.7−9.99i)T2 |
| 19 | 1+(3.14−4.32i)T+(−5.87−18.0i)T2 |
| 23 | 1+1.35T+23T2 |
| 29 | 1+(−0.0866−0.119i)T+(−8.96+27.5i)T2 |
| 31 | 1+(−0.489−1.50i)T+(−25.0+18.2i)T2 |
| 37 | 1+(4.33+5.97i)T+(−11.4+35.1i)T2 |
| 41 | 1+(2.92+2.12i)T+(12.6+38.9i)T2 |
| 43 | 1−6.62iT−43T2 |
| 47 | 1+(2.44+1.77i)T+(14.5+44.6i)T2 |
| 53 | 1+(4.41−1.43i)T+(42.8−31.1i)T2 |
| 59 | 1+(−7.35−10.1i)T+(−18.2+56.1i)T2 |
| 61 | 1+(−0.627−0.203i)T+(49.3+35.8i)T2 |
| 67 | 1−3.00iT−67T2 |
| 71 | 1+(3.26−10.0i)T+(−57.4−41.7i)T2 |
| 73 | 1+(−8.61+6.25i)T+(22.5−69.4i)T2 |
| 79 | 1+(−1.99−6.13i)T+(−63.9+46.4i)T2 |
| 83 | 1+(2.17+0.705i)T+(67.1+48.7i)T2 |
| 89 | 1−11.5T+89T2 |
| 97 | 1+(−2.68−8.25i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.835813786920975478722577558203, −8.805469408912798664704181928111, −8.105604427372673008460351592572, −7.47357594477401157595230180057, −6.80719339899136729432813943992, −5.96416676849488658275637841703, −4.95819643291526828801356298986, −3.76817065838731964426169287029, −2.37604113480691310551152175981, −1.33626667343194804875101508290,
1.77231736825601048729061575442, 2.45026527461609864847138821998, 3.61164056641655881460520104704, 4.80760385299111195004796608425, 5.08154139300808654959361103798, 6.18319005284047350046280643296, 8.189428021541295488657516650099, 8.667376364818201047649156471127, 9.313046987954428372891966490218, 9.959403676084569457304383592453