L(s) = 1 | − 3·3-s + 5-s + 7-s + 6·9-s + 6·13-s − 3·15-s − 3·17-s − 5·19-s − 3·21-s + 2·23-s + 25-s − 9·27-s + 5·29-s − 5·31-s + 35-s − 37-s − 18·39-s + 2·41-s + 12·43-s + 6·45-s + 2·47-s − 6·49-s + 9·51-s − 13·53-s + 15·57-s − 2·59-s − 61-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 0.447·5-s + 0.377·7-s + 2·9-s + 1.66·13-s − 0.774·15-s − 0.727·17-s − 1.14·19-s − 0.654·21-s + 0.417·23-s + 1/5·25-s − 1.73·27-s + 0.928·29-s − 0.898·31-s + 0.169·35-s − 0.164·37-s − 2.88·39-s + 0.312·41-s + 1.82·43-s + 0.894·45-s + 0.291·47-s − 6/7·49-s + 1.26·51-s − 1.78·53-s + 1.98·57-s − 0.260·59-s − 0.128·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + p T + p T^{2} \) |
| 7 | \( 1 - T + p T^{2} \) |
| 13 | \( 1 - 6 T + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 19 | \( 1 + 5 T + p T^{2} \) |
| 23 | \( 1 - 2 T + p T^{2} \) |
| 29 | \( 1 - 5 T + p T^{2} \) |
| 31 | \( 1 + 5 T + p T^{2} \) |
| 37 | \( 1 + T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 - 2 T + p T^{2} \) |
| 53 | \( 1 + 13 T + p T^{2} \) |
| 59 | \( 1 + 2 T + p T^{2} \) |
| 61 | \( 1 + T + p T^{2} \) |
| 67 | \( 1 + 16 T + p T^{2} \) |
| 71 | \( 1 + 15 T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 - 2 T + p T^{2} \) |
| 83 | \( 1 + 14 T + p T^{2} \) |
| 89 | \( 1 - 9 T + p T^{2} \) |
| 97 | \( 1 + 16 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.05489758355601967759943436966, −6.40685004287654883435103180679, −6.00514674241637878671719902267, −5.50897498234508480061637227522, −4.43234051750562207876488859604, −4.35957910011061397234039659849, −3.04994318437691480144006708745, −1.78022016543760968230938159437, −1.15905119202116105706264313535, 0,
1.15905119202116105706264313535, 1.78022016543760968230938159437, 3.04994318437691480144006708745, 4.35957910011061397234039659849, 4.43234051750562207876488859604, 5.50897498234508480061637227522, 6.00514674241637878671719902267, 6.40685004287654883435103180679, 7.05489758355601967759943436966