Properties

Label 2-9680-1.1-c1-0-148
Degree $2$
Conductor $9680$
Sign $-1$
Analytic cond. $77.2951$
Root an. cond. $8.79176$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.56·3-s + 5-s + 1.56·7-s − 0.561·9-s − 2·13-s − 1.56·15-s − 3.56·17-s − 1.56·19-s − 2.43·21-s + 3.12·23-s + 25-s + 5.56·27-s + 2.68·29-s − 2.43·31-s + 1.56·35-s + 6.68·37-s + 3.12·39-s − 2·41-s − 6.24·43-s − 0.561·45-s + 4.87·47-s − 4.56·49-s + 5.56·51-s + 0.438·53-s + 2.43·57-s + 7.12·59-s − 14.6·61-s + ⋯
L(s)  = 1  − 0.901·3-s + 0.447·5-s + 0.590·7-s − 0.187·9-s − 0.554·13-s − 0.403·15-s − 0.863·17-s − 0.358·19-s − 0.532·21-s + 0.651·23-s + 0.200·25-s + 1.07·27-s + 0.498·29-s − 0.437·31-s + 0.263·35-s + 1.09·37-s + 0.500·39-s − 0.312·41-s − 0.952·43-s − 0.0837·45-s + 0.711·47-s − 0.651·49-s + 0.778·51-s + 0.0602·53-s + 0.322·57-s + 0.927·59-s − 1.88·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9680\)    =    \(2^{4} \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(77.2951\)
Root analytic conductor: \(8.79176\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good3 \( 1 + 1.56T + 3T^{2} \)
7 \( 1 - 1.56T + 7T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + 3.56T + 17T^{2} \)
19 \( 1 + 1.56T + 19T^{2} \)
23 \( 1 - 3.12T + 23T^{2} \)
29 \( 1 - 2.68T + 29T^{2} \)
31 \( 1 + 2.43T + 31T^{2} \)
37 \( 1 - 6.68T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 6.24T + 43T^{2} \)
47 \( 1 - 4.87T + 47T^{2} \)
53 \( 1 - 0.438T + 53T^{2} \)
59 \( 1 - 7.12T + 59T^{2} \)
61 \( 1 + 14.6T + 61T^{2} \)
67 \( 1 - 10.2T + 67T^{2} \)
71 \( 1 - 8.68T + 71T^{2} \)
73 \( 1 - 2T + 73T^{2} \)
79 \( 1 - 9.36T + 79T^{2} \)
83 \( 1 + 3.12T + 83T^{2} \)
89 \( 1 + 8.43T + 89T^{2} \)
97 \( 1 + 1.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.15673988308875618716612719000, −6.55095159732329623875788620217, −6.02190306012742267495219298326, −5.11389584672322255327558410707, −4.91117125486459745062827588908, −3.99970415302905559884714436781, −2.86166812998242893449730268559, −2.15524747745675525785596233658, −1.11865406624299135599817496595, 0, 1.11865406624299135599817496595, 2.15524747745675525785596233658, 2.86166812998242893449730268559, 3.99970415302905559884714436781, 4.91117125486459745062827588908, 5.11389584672322255327558410707, 6.02190306012742267495219298326, 6.55095159732329623875788620217, 7.15673988308875618716612719000

Graph of the $Z$-function along the critical line